iBoot/platform/t8010/init.c

2162 lines
51 KiB
C
Raw Normal View History

2023-07-08 13:03:17 -07:00
/*
* Copyright (C) 2012-2015 Apple Inc. All rights reserved.
*
* This document is the property of Apple Inc.
* It is considered confidential and proprietary.
*
* This document may not be reproduced or transmitted in any form,
* in whole or in part, without the express written permission of
* Apple Inc.
*/
#include <arch.h>
#include <arch/arm/arm.h>
#include <debug.h>
#include <drivers/aes.h>
#include <drivers/anc_boot.h>
#include <drivers/apcie.h>
#include <drivers/asp.h>
#include <drivers/ccc/ccc.h>
#if WITH_CONSISTENT_DBG
#include <drivers/consistent_debug.h>
#endif
#include <drivers/csi.h>
#include <drivers/display.h>
#if WITH_HW_DISPLAY_PMU
#include <drivers/display_pmu.h>
#endif
#include <drivers/iic.h>
#include <drivers/miu.h>
#include <drivers/nvme.h>
#include <drivers/pci.h>
#include <drivers/power.h>
#if WITH_HW_SEP
#include <drivers/sep/sep_client.h>
#endif
#include <drivers/shmcon.h>
#include <drivers/spi.h>
#include <drivers/uart.h>
#include <drivers/usb/usb_public.h>
#include <drivers/usbphy.h>
#include <drivers/reconfig.h>
#include <lib/env.h>
#include <lib/nonce.h>
#include <lib/paint.h>
#include <platform.h>
#include <platform/apcie.h>
#include <platform/clocks.h>
#include <platform/gpio.h>
#include <platform/gpiodef.h>
#include <platform/int.h>
#include <platform/miu.h>
#include <platform/memmap.h>
#include <platform/power.h>
#include <platform/timer.h>
#include <platform/soc/hwclocks.h>
#include <platform/soc/chipid.h>
#include <platform/soc/miu.h>
#include <platform/soc/pmgr.h>
#if WITH_PLATFORM_ERROR_HANDLER
#include <platform/error_handler.h>
#endif
#include <platform/trampoline.h>
#include <platform/soc/reconfig.h>
#include <platform/soc/aop_config_sequences.h>
#include <sys.h>
#include <sys/boot.h>
#include <sys/menu.h>
#include <target.h>
static void platform_init_boot_strap(void);
static void platform_bootprep_darwin(void);
static int power_convert_buck_to_rail(int buck, int *rail);
static void power_get_buck_value_fpga(int buck, uint32_t mv, uint32_t *val);
static int power_convert_dwi_to_mv_fpga(unsigned int buck, uint32_t dwival);
static void platform_awake_to_aop_ddr_pre_sequence_insert();
static void platform_awake_to_aop_ddr_post_sequence_insert();
static void platform_aop_ddr_to_s2r_aop_pre_sequence_insert();
static void platform_s2r_aop_to_aop_ddr_post_sequence_insert();
static void platform_aop_ddr_to_awake_pre_sequence_insert();
static void platform_aop_ddr_to_awake_post_sequence_insert();
static uint8_t boot_debug;
static bool gDisplayEnabled;
int platform_early_init(void)
{
#if (PRODUCT_LLB || PRODUCT_IBSS)
/* Verify that the fuses and SecureROM R/W access has been disabled */
if (!chipid_get_fuse_lock() || (((*(volatile uint32_t *)SECURITY_REG) & ROM_READ_DISABLE) == 0)) {
panic("Fuses are unlocked or SecureROM is enabled\n");
}
/* Verify that the fuses are sealed on production devices. */
if (chipid_get_current_production_mode() && !chipid_get_fuse_seal()) {
panic("Fuses are not sealed\n");
}
#endif
/* Enable more Cyclone specific errors */
ccc_enable_custom_errors();
#if WITH_HW_PLATFORM_POWER
/* initialize the pmgr driver */
platform_power_init();
#endif
#if WITH_HW_MIU
/* CIF, SCU, remap setup */
miu_init();
#endif
#if WITH_HW_CLOCKS
/* initialize the clock driver */
clocks_init();
#endif
#if WITH_HW_AIC
/* initialize the AIC, mask all interrupts */
interrupt_init();
#endif
#if WITH_HW_TIMER
timer_init(0);
#endif
#if WITH_HW_USBPHY
usbphy_power_down();
#endif
#if WITH_HW_UART
/* do whatever uart initialization we need to get a simple console */
uart_init();
debug_enable_uarts(3);
#endif
#if WITH_SHM_CONSOLE
shmcon_init();
#endif
#if WITH_IIC
iic_init();
#endif
#if !PRODUCT_IBOOT && !PRODUCT_IBEC
platform_init_power();
#if WITH_BOOT_STAGE
boot_check_stage();
#endif
#endif
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductStart);
#endif
#if WITH_HW_POWER
power_get_nvram(kPowerNVRAMiBootDebugKey, &boot_debug);
debug_enable_uarts(boot_debug);
#endif
#if WITH_TARGET_CONFIG
target_early_init();
#endif
return 0;
}
int platform_late_init(void)
{
#if WITH_ENV
/* publish secure-boot flag for restore mode */
env_set_uint("secure-boot", 1, 0);
/* turn off DEBUG clock if debug-soc nvram is not true */
clock_gate(CLK_DEBUG, env_get_bool("debug-soc", false));
#endif
#if WITH_HW_USB && WITH_USB_MODE_RECOVERY
usb_early_init();
#endif
#if WITH_HW_POWER
power_late_init();
#endif
#if WITH_TARGET_CONFIG
target_late_init();
#endif
#if WITH_HW_DCS
extern void mcu_late_init(void);
mcu_late_init();
#endif
#if WITH_CSI
csi_late_init();
#endif
return 0;
}
int platform_init_setup_clocks(void)
{
#if WITH_HW_CLOCKS
clocks_set_default();
#endif
return 0;
}
int platform_init_hwpins(void)
{
// need board id to select default pinconfig
platform_init_boot_strap();
#if WITH_HW_GPIO
/* finish initializing the gpio driver */
gpio_init_pinconfig();
#endif
return 0;
}
int platform_init_internal_mem(void)
{
#if WITH_HW_MIU
/* initialize sram bus */
miu_initialize_internal_ram();
#endif
return 0;
}
int platform_init_mainmem(bool resume)
{
RELEASE_ASSERT(!resume);
#if WITH_HW_MIU && APPLICATION_IBOOT
/* initialize sdram */
miu_initialize_dram(resume);
#endif
return 0;
}
void platform_init_mainmem_map(void)
{
}
int platform_init_power(void)
{
#if WITH_HW_POWER
power_init();
#endif
return 0;
}
int platform_init_display(void)
{
#if WITH_HW_DISPLAYPIPE
static bool displayInitOnce;
uint32_t backlight_level = 0;
int result = 0;
/* initialize the display if not already enabled */
if (!gDisplayEnabled) {
#if WITH_HW_DISPLAY_PMU
display_pmu_init();
#endif
if (!displayInitOnce) {
platform_quiesce_display();
clock_gate(CLK_RTMUX, true);
result = display_init();
} else result = -1;
/* if initialization fails, make sure we never try again. On success, gDisplayEnabled will be set,
* ensuring no reinitialization unless platform_quiesce_display is called first.
*/
if (result != 0) {
displayInitOnce = true;
}
}
if (result == 0) {
gDisplayEnabled = true;
backlight_level = env_get_uint("backlight-level", 0xffffffff);
}
power_backlight_enable(backlight_level);
#endif
return 0;
}
int platform_init_display_mem(addr_t *base, size_t *size)
{
#if WITH_HW_DISPLAYPIPE
addr_t base_rounded = *base;
addr_t end_rounded = *base + *size;
size_t size_rounded = *size;
/* Map the framebuffer as device memory and
* round the base and size to the mapping granule.
*/
base_rounded = ROUNDDOWN(base_rounded, MB);
end_rounded = ROUNDUP(end_rounded, MB);
size_rounded = end_rounded - base_rounded;
*base = base_rounded;
*size = size_rounded;
#endif
return 0;
}
int platform_init_mass_storage_panic(void)
{
#if WITH_NVME
return nvme_init_mass_storage_panic(0);
#else
return 0;
#endif
}
int platform_init_mass_storage(void)
{
#if WITH_NVME
return nvme_init_mass_storage(0);
#else
return 0;
#endif
}
int platform_quiesce_hardware(enum boot_target target)
{
bool quiesce_clocks = false;
#if APPLICATION_SECUREROM
quiesce_clocks = true;
#endif
#if WITH_TARGET_CONFIG
target_quiesce_hardware();
#endif
#if WITH_HW_USB
usb_quiesce();
#endif
#if WITH_CSI
csi_quiesce(target);
#endif
#if WITH_NVME
nvme_quiesce_all();
#endif
#if WITH_HW_APCIE
apcie_disable_all();
#endif
switch (target) {
case BOOT_HALT:
break;
case BOOT_SECUREROM:
case BOOT_DARWIN_RESTORE:
panic("not supported");
break;
case BOOT_IBOOT:
case BOOT_DARWIN:
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductEnd);
#endif
break;
case BOOT_DIAGS:
quiesce_clocks = true;
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductEnd);
#endif
break;
default:
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
break;
}
#if WITH_HW_TIMER
timer_stop_all();
#endif
#if WITH_HW_AIC
interrupt_mask_all();
#endif
if (quiesce_clocks) {
#if WITH_HW_CLOCKS
clocks_quiesce();
#endif
}
#if APPLICATION_IBOOT
switch (target) {
case BOOT_IBOOT :
break;
default:
break;
}
#endif
return 0;
}
int platform_quiesce_display(void)
{
#if WITH_HW_DISPLAYPIPE
// Turn off the back light
power_backlight_enable(0);
clock_gate(CLK_RTMUX, true);
/* quiesce the panel */
if (display_quiesce(true) == ENXIO) {
clock_gate(CLK_RTMUX, false);
}
#endif
gDisplayEnabled = false;
return 0;
}
static bool need_l2_ram_disabled(void)
{
#if PRODUCT_IBSS || PRODUCT_LLB
// If the current product is iBSS or LLB we're currently running out
// of L2-as-RAM and therefore can't disable it.
return false;
#else
return true;
#endif
}
int platform_bootprep(enum boot_target target)
{
uint32_t gids = ~0, uids = ~0; /* leave crypto keys alone by default */
bool l2_ram_disable = false;
/* prepare hardware for booting into various targets */
#if WITH_HW_CLOCKS
if (target != BOOT_IBOOT) clocks_set_performance(kPerformanceHigh);
#endif
#if WITH_TARGET_CONFIG
target_bootprep(target);
#endif
/* If we're not restoring, reset the watchdog-on-wake until enabled */
if ((boot_debug & kPowerNVRAMiBootDebugWDTWake) && (target == BOOT_DARWIN))
{
boot_debug &= ~kPowerNVRAMiBootDebugWDTWake;
#if WITH_HW_POWER
power_set_nvram(kPowerNVRAMiBootDebugKey, boot_debug);
#endif
}
switch (target) {
#if APPLICATION_IBOOT
case BOOT_DARWIN_RESTORE:
panic("not supported");
break;
#if WITH_BOOT_XNU
case BOOT_DARWIN:
platform_bootprep_darwin();
if (boot_debug & kPowerNVRAMiBootDebugWDTWake)
wdt_enable();
/* even when trusted, Darwin only gets the UID / GID1 */
uids = 1;
gids = 2;
l2_ram_disable = true;
break;
#endif // WITH_BOOT_XNU
case BOOT_DIAGS:
#if WITH_SIDP
/* Seal the manifest that authorizes diags. */
security_sidp_seal_boot_manifest(false);
#endif
l2_ram_disable = need_l2_ram_disabled();
platform_quiesce_display();
#if WITH_BOOT_STAGE
boot_clear_error_count();
#endif
break;
case BOOT_IBOOT:
l2_ram_disable = need_l2_ram_disabled();
platform_quiesce_display();
break;
#endif // APPLICATION_IBOOT
case BOOT_UNKNOWN:
platform_quiesce_display();
break;
case BOOT_SECUREROM:
case BOOT_MONITOR:
default:
panic("unknown boot target %d", target);
}
// Make sure L2-as-RAM is disabled if required.
if (l2_ram_disable) {
uint64_t l2_cramconfig = arm_read_l2_cramconfig();
if ((l2_cramconfig & 0x3F) != 0) {
panic("SRAM is still enabled");
}
}
/* make sure that fuse lock bit is set. */
if (security_get_lock_fuses())
chipid_set_fuse_lock(true);
/* Let security override keys */
if (!security_allow_modes(kSecurityModeGIDKeyAccess))
gids = 0;
if (!security_allow_modes(kSecurityModeUIDKeyAccess))
uids = 0;
/* disable all keys not requested */
platform_disable_keys(~gids, ~uids);
#if WITH_SIDP
/* The Silicon Data Protection ROM manifest must be locked. */
if (!platform_sidp_rom_manifest_locked()) {
panic("SiDP ROM manifest not locked");
}
#if !APPLICATION_SECUREROM
/* The Silicon Data Protection boot manifest must be locked. */
if ((target != BOOT_IBOOT) && !platform_sidp_boot_manifest_locked()) {
panic("SiDP boot manifest not locked");
}
#endif // !APPLICATION_SECUREROM
#endif // WITH_SIDP
/* Disable Cyclone specific errors enabled earlier in the boot */
ccc_disable_custom_errors();
return 0;
}
void platform_mmu_setup(bool resume)
{
RELEASE_ASSERT(!resume);
#if APPLICATION_SECUREROM
// ROM is obviously read/execute since it's ROM
arm_mmu_map_rx(VROM_BASE, VROM_BANK_LEN);
// everything ROM needs in SRAM is read-write,
// except the trampoline which is read-execute
arm_mmu_map_rw(INSECURE_MEMORY_BASE, INSECURE_MEMORY_SIZE);
arm_mmu_map_rx(BOOT_TRAMPOLINE_BASE, BOOT_TRAMPOLINE_SIZE);
arm_mmu_map_rw(DATA_BASE, DATA_SIZE);
// skip page tables here
arm_mmu_map_rw(STACKS_BASE, STACKS_SIZE);
arm_mmu_map_rw(HEAP_BASE, HEAP_SIZE);
#else // APPLICATION_IBOOT
// Figure out where the linker put our various bits
uintptr_t text_end_aligned = ((uintptr_t)&_text_end + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
size_t text_size = text_end_aligned - (uintptr_t)&_text_start;
RELEASE_ASSERT(text_end_aligned <= (uintptr_t)&_data_start);
#if PRODUCT_LLB || PRODUCT_IBSS
arm_mmu_map_rw(SDRAM_BASE, SDRAM_LEN);
// Map read/write SRAM regions
// Don't map the page tables so that they can't be modified
arm_mmu_map_rw(SRAM_BASE, VROM_RSVD);
arm_mmu_map_rw(STACKS_BASE, STACKS_SIZE);
arm_mmu_map_rw(HEAP_BASE, HEAP_SIZE);
// __TEXT is read/execute, __DATA is read/write
arm_mmu_map_rx(BOOT_TRAMPOLINE_BASE, BOOT_TRAMPOLINE_SIZE);
arm_mmu_map_rx((uintptr_t)&_text_start, text_size);
arm_mmu_map_rw(text_end_aligned, CODE_DATA_END - text_end_aligned);
#else // PRODUCT_IBEC || PRODUCT_IBOOT
// Most of DRAM gets mapped read/write
arm_mmu_map_rw(SDRAM_BASE, (uintptr_t)&_text_start - SDRAM_BASE);
// only the text section should be executable, and it should be read only
arm_mmu_map_rx((uintptr_t)&_text_start, text_size);
arm_mmu_map_rw(text_end_aligned, PAGE_TABLES_BASE - text_end_aligned);
// skip mapping the page tables so that they can't be modified
// map the stacks read-write
arm_mmu_map_rw(STACKS_BASE, STACKS_SIZE);
// map the boot trampoline read/execute
arm_mmu_map_rx(BOOT_TRAMPOLINE_BASE, BOOT_TRAMPOLINE_SIZE);
// map the heap read-write, leaving a hole at the end
arm_mmu_map_rw(HEAP_BASE, HEAP_SIZE);
RELEASE_ASSERT(HEAP_BASE + HEAP_SIZE == HEAP_GUARD);
// and then everything up to the end of DRAM is read/write again
arm_mmu_map_rw(CODE_DATA_END, SDRAM_END - (CODE_DATA_END));
#endif // PRODUCT_LLB || PRODUCT_IBSS
#endif // APPLICATION_SECUREROM
// map IO
arm_mmu_map_device_rw(IO_BASE, IO_SIZE);
arm_mmu_map_device_rw(PCI_REG_BASE, PCI_REG_LEN);
arm_mmu_map_device_rw(PCI_CONFIG_BASE, PCI_CONFIG_LEN);
arm_mmu_map_device_rw(PCI_32BIT_BASE, PCI_32BIT_LEN);
}
int platform_init(void)
{
#if defined(UNUSED_MEMORY_BASE) && (UNUSED_MEMORY_SIZE > 0)
bzero((void *)UNUSED_MEMORY_BASE, UNUSED_MEMORY_SIZE);
#endif
#if WITH_CONSISTENT_DBG && (PRODUCT_IBOOT || PRODUCT_IBEC || WITH_RECOVERY_MODE_IBSS)
consistent_debug_init();
#endif
#if WITH_PLATFORM_ERROR_HANDLER
platform_enable_error_handler();
#endif
#if PRODUCT_IBEC && WITH_SIDP
// The code that authorized iBEC must have locked the boot manifest.
RELEASE_ASSERT(platform_sidp_boot_manifest_locked());
#endif
#if WITH_HW_SPI
spi_init();
#endif
#if WITH_PCI
pci_init();
#endif
#if WITH_NVME && (PRODUCT_LLB || PRODUCT_IBOOT || PRODUCT_IBEC || WITH_RECOVERY_MODE_IBSS)
#if PRODUCT_IBEC
apcie_set_s3e_mode(true);
#else
apcie_set_s3e_mode(false);
#endif
if (apcie_enable_link(0)) {
nvme_init(0, apcie_get_port_bridge(0), 0);
}
#endif
#if WITH_TARGET_CONFIG
target_init();
#endif
return 0;
}
int platform_debug_init(void)
{
#if WITH_HW_USB
uint32_t usb_enabled = 1;
#if WITH_ENV && SUPPORT_FPGA
usb_enabled = env_get_uint("usb-enabled", 1);
#endif
if (usb_enabled) usb_init();
#endif
#if WITH_TARGET_CONFIG
target_debug_init();
#endif
return 0;
}
void platform_poweroff(void)
{
platform_quiesce_display();
#if WITH_NVME
nvme_quiesce_all();
#endif
#if WITH_HW_APCIE
apcie_disable_all();
#endif
#if WITH_TARGET_CONFIG
target_poweroff();
#endif
#if WITH_HW_POWER
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
power_shutdown();
#endif
for(;;);
}
uint32_t platform_set_performance(uint32_t performance_level)
{
uint32_t old_performance_level = kPerformanceHigh;
#if WITH_HW_CLOCKS
old_performance_level = clocks_set_performance(performance_level);
#endif
return old_performance_level;
}
void platform_setup_default_environment(void)
{
#if WITH_ENV
env_set("boot-device", "nvme_nand0", 0);
#endif
target_setup_default_environment();
}
#if WITH_DEVICETREE
int platform_update_device_tree(void)
{
DTNode *node;
uint32_t propSize;
char *propName;
void *propData;
// Find the cpu0 node.
if (FindNode(0, "cpus/cpu0", &node)) {
// Fill in the cpu frequency
propName = "clock-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_CPU);
memcpy(propData, &freq, propSize);
}
// Fill in the memory frequency
propName = "memory-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_MEM);
memcpy(propData, &freq, propSize);
}
// Fill in the bus frequency
propName = "bus-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_BUS);
memcpy(propData, &freq, propSize);
}
// Fill in the peripheral frequency
propName = "peripheral-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_PERIPH);
memcpy(propData, &freq, propSize);
}
// Fill in the fixed frequency
propName = "fixed-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_FIXED);
memcpy(propData, &freq, propSize);
}
// Fill in the time base frequency
propName = "timebase-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
uint64_t freq = clock_get_frequency(CLK_TIMEBASE);
memcpy(propData, &freq, propSize);
}
}
// Find the arm-io node
if (FindNode(0, "arm-io", &node)) {
// Fill in the clock-frequencies table
propName = "clock-frequencies";
if (FindProperty(node, &propName, &propData, &propSize)) {
clock_get_frequencies(propData, propSize / sizeof(uint32_t));
}
// Fill in the usb-phy frequency
propName = "usbphy-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_USBPHYCLK);
}
}
// Find the mcc node
if (FindNode(0, "arm-io/mcc", &node)) {
propName = "dcs_num_channels";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = DCS_NUM_CHANNELS;
}
}
// Find the pmgr node
if (FindNode(0, "arm-io/pmgr", &node)) {
pmgr_update_device_tree(node);
miu_update_device_tree(node);
}
// Find the gfx node
if (FindNode(0, "arm-io/sgx", &node)) {
pmgr_gfx_update_device_tree(node);
}
// Find the audio-complex node
if (FindNode(0, "arm-io/audio-complex", &node)) {
// Fill in the ncoref-frequency frequency
propName = "ncoref-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_NCOREF);
}
}
// Find the apcie node
#if WITH_HW_APCIE
if (FindNode(0, "arm-io/apcie", &node)) {
apcie_update_devicetree(node);
}
#endif
#if WITH_HW_PLATFORM_CHIPID
// Find the arm-io node
if (FindNode(0, "arm-io", &node)) {
// Fill in the chip-revision property
propName = "chip-revision";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = platform_get_chip_revision();
}
}
#endif
#if WITH_HW_USBPHY
// Find the otgphyctrl node
if (FindNode(0, "arm-io/otgphyctrl", &node)) {
usbphy_update_device_tree(node);
}
#endif
#if WITH_NVME
if (FindNode(0, "arm-io/nvme-mmu0", &node)) {
uintptr_t *sart_region = NULL;
uint32_t *sart_virt_base = NULL;
uint64_t *nvme_scratch_region = NULL;
propName = "sart-region";
if (FindProperty(node, &propName, &propData, &propSize) && propSize == 2 * sizeof(uintptr_t)) {
sart_region = (uintptr_t *)propData;
}
propName = "sart-virtual-base";
if (FindProperty(node, &propName, &propData, &propSize) && propSize == sizeof(uint32_t)) {
sart_virt_base = (uint32_t *)propData;
}
if (FindNode(0, "arm-io/apcie/pci-bridge0/s3e", &node)) {
propName = "nvme-scratch-virt-region";
if (FindProperty(node, &propName, &propData, &propSize) && propSize == 2 * sizeof(uint64_t)) {
nvme_scratch_region = propData;
}
}
if (sart_region != NULL && sart_virt_base != NULL && nvme_scratch_region != NULL) {
// Tell PCIe driver to point the SART at the scratch buffer
sart_region[0] = platform_get_memory_region_base(kMemoryRegion_StorageProcessor);
sart_region[1] = platform_get_memory_region_size(kMemoryRegion_StorageProcessor);
// Tell NVMe driver where the SART is putting the scratch buffer
nvme_scratch_region[0] = *sart_virt_base;
nvme_scratch_region[1] = sart_region[1];
}
}
#endif
if (dt_find_node(NULL, "arm-io/aop", &node)) {
addr_t aop_region_base = platform_get_memory_region_base(kMemoryRegion_AOP);
addr_t aop_region_size = platform_get_memory_region_size(kMemoryRegion_AOP);
// Find the reg that maps the AOP SRAM and adjust it to account
// for the SRAM used by the reconfig region
bool updated = false;
if (dt_find_prop(node, "reg", &propData, &propSize)) {
uintptr_t *regs = (uintptr_t *)propData;
unsigned num_regs = propSize / (sizeof(*regs) * 2);
for (unsigned i = 0; i < num_regs; i++) {
if (regs[i * 2] == aop_region_base - IO_BASE) {
regs[i * 2 + 1] = aop_region_size;
updated = true;
break;
}
}
}
if (!updated) panic("failed to update AOP's reg property");
if (dt_find_node(node, "iop-aop-nub", &node)) {
dt_set_prop_addr(node, "region-base", aop_region_base);
dt_set_prop_addr(node, "region-size", aop_region_size);
} else {
panic("failed to find AOP nub node");
}
}
return target_update_device_tree();
}
#endif
uint32_t platform_get_board_id(void)
{
uint32_t board_id;
ASSERT((rPMGR_SCRATCH0 & kPlatformScratchFlagBootStrap) != 0);
board_id = (rPMGR_SCRATCH0 >> 16) & 0xFF;
return board_id;
}
bool platform_get_lock_fuses_required(void)
{
bool lock_fuses = true;
return lock_fuses;
}
uint32_t platform_get_boot_config(void)
{
uint32_t boot_config;
boot_config = (rPMGR_SCRATCH0 >> 8) & 0xFF;
return boot_config;
}
bool platform_get_boot_device(int32_t index, enum boot_device *boot_device, uint32_t *boot_flag, uint32_t *boot_arg)
{
uint32_t boot_config = platform_get_boot_config();
/* T8010 supports one boot device then USB-DFU per boot config */
switch (boot_config) {
case BOOT_CONFIG_SPI0:
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = 0;
*boot_arg = 0;
break;
case BOOT_CONFIG_SPI0_TEST:
case BOOT_CONFIG_FAST_SPI0_TEST:
case BOOT_CONFIG_SLOW_SPI0_TEST:
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 0;
break;
case BOOT_CONFIG_NVME0_X1:
case BOOT_CONFIG_NVME0_X2:
*boot_device = BOOT_DEVICE_NVME;
*boot_flag = 0;
*boot_arg = 0;
break;
case BOOT_CONFIG_NVME0_X1_TEST:
case BOOT_CONFIG_NVME0_X2_TEST:
*boot_device = BOOT_DEVICE_NVME;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 0;
break;
default:
return false;
}
/* Change boot_device and boot_arg for DFU Mode */
/* Don't change flags */
if (index == -1 || (index != 0 && *boot_device != BOOT_DEVICE_TBTDFU)) {
*boot_device = BOOT_DEVICE_USBDFU;
*boot_arg = 0;
}
return true;
}
/*
* boot_interface_pin tables
* tables are executed in order for disable and reverse order for enable
*
*/
struct boot_interface_pin {
gpio_t pin;
uint32_t enable;
uint32_t disable;
};
#if WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI
static const struct boot_interface_pin spi0_boot_interface_pins[] =
{
#if SUPPORT_FPGA
{ GPIO_SPI0_SSIN, GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_SSIN
#else
{ GPIO_SPI0_SSIN, GPIO_CFG_OUT_1, GPIO_CFG_DFLT }, // SPI0_SSIN
#endif
{ GPIO_SPI0_SCLK, GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_SCLK
{ GPIO_SPI0_MOSI, GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_MOSI
{ GPIO_SPI0_MISO, GPIO_CFG_FUNC0, GPIO_CFG_DFLT } // SPI0_MISO
};
#endif /* WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI */
void platform_enable_boot_interface(bool enable, enum boot_device boot_device, uint32_t boot_arg)
{
const struct boot_interface_pin *pins = 0;
uint32_t cnt, func, pin_count = 0;
gpio_t pin;
switch (boot_device) {
#if WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI
case BOOT_DEVICE_SPI :
if (boot_arg == 0) {
pins = spi0_boot_interface_pins;
pin_count = (sizeof(spi0_boot_interface_pins) / sizeof(spi0_boot_interface_pins[0]));
}
break;
#endif /* WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI */
#if WITH_ANC_BOOT
case BOOT_DEVICE_NAND :
/* NAND pins are off to ASP */
break;
#endif /* WITH_ANC_BOOT */
#if WITH_NVME
case BOOT_DEVICE_NVME :
{
uint32_t dart_id = 0;
uint32_t pcie_port = 0;
if (boot_arg != 0) {
panic("invalid NVMe boot argument %u", boot_arg);
}
if (enable) {
apcie_set_s3e_mode(false);
// Don't try to probe for the NVMe device if the link doesn't come
// up because we shut down the root complex on link initialization
// failures
if (apcie_enable_link(pcie_port)) {
nvme_init(0, apcie_get_port_bridge(pcie_port), dart_id);
}
}
if (!enable) {
// These guys are safe no-ops if the enable above failed
nvme_quiesce(0);
apcie_disable_link(pcie_port);
}
break;
}
#endif
#if WITH_USB_DFU
case BOOT_DEVICE_USBDFU :
/* USB is always configured */
break;
#endif /* WITH_USB_DFU */
default :
break;
}
for (cnt = 0; cnt < pin_count; cnt++) {
if (enable) {
pin = pins[pin_count - 1 - cnt].pin;
func = pins[pin_count - 1 - cnt].enable;
} else {
pin = pins[cnt].pin;
func = pins[cnt].disable;
}
dprintf(DEBUG_INFO, "platform_enable_boot_interface: 0 %x, %x\n", pin, func);
gpio_configure(pin, func);
}
}
uint32_t platform_get_apcie_lane_cfg(void)
{
uint32_t boot_config = platform_get_boot_config();
switch (boot_config) {
case BOOT_CONFIG_NVME0_X1:
case BOOT_CONFIG_NVME0_X1_TEST:
return APCIE_LANE_CONFIG_NVME0_X1;
case BOOT_CONFIG_NVME0_X2:
case BOOT_CONFIG_NVME0_X2_TEST:
return APCIE_LANE_CONFIG_NVME0_X2;
default:
panic("unknown pcie boot config 0x%x", boot_config);
}
}
// Get the expected link width (number of lanes) for the given PCIe link
// A value of 0 means to auto-negotiate (and has no effect for ports
// that only support x1 mode in the hardware)
uint32_t platform_get_pcie_link_width(uint32_t link)
{
uint32_t boot_config = platform_get_boot_config();
switch (boot_config) {
case BOOT_CONFIG_NVME0_X1:
case BOOT_CONFIG_NVME0_X1_TEST:
return 1;
default:
return 0;
}
}
uint64_t platform_get_nonce(void)
{
uint64_t nonce;
uint32_t *nonce_words = (uint32_t *)&nonce;
// If rPMGR_SCRATCH0[1] set then the nonce has already been generated
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagNonce) == 0) {
nonce = platform_consume_nonce();
rPMGR_SCRATCH_BOOT_NONCE_0 = nonce_words[0];
rPMGR_SCRATCH_BOOT_NONCE_1 = nonce_words[1];
rPMGR_SCRATCH0 |= kPlatformScratchFlagNonce;
} else {
nonce_words[0] = rPMGR_SCRATCH_BOOT_NONCE_0;
nonce_words[1] = rPMGR_SCRATCH_BOOT_NONCE_1;
}
return nonce;
}
int32_t platform_get_sep_nonce(uint8_t *nonce)
{
#if WITH_HW_SEP
return sep_client_get_nonce(nonce);
#else
return -1;
#endif
}
bool platform_get_ecid_image_personalization_required(void)
{
return true;
}
uint32_t platform_get_osc_frequency(void)
{
return chipid_get_osc_frequency();
}
uint32_t platform_get_spi_frequency(void)
{
#if SUPPORT_FPGA
return 2500000;
#else
switch (platform_get_boot_config()) {
case BOOT_CONFIG_FAST_SPI0_TEST:
return 24000000;
case BOOT_CONFIG_SLOW_SPI0_TEST:
return 6000000;
default:
return 12000000;
}
#endif
}
bool platform_get_usb_cable_connected(void)
{
#if WITH_HW_USBPHY
return usbphy_is_cable_connected();
#else
return false;
#endif
}
void platform_set_dfu_status(bool dfu)
{
gpio_write(GPIO_DFU_STATUS, dfu);
}
bool platform_get_force_dfu(void)
{
return gpio_read(GPIO_FORCE_DFU);
}
bool platform_get_request_dfu1(void) // Formerly platform_get_hold_key()
{
return !gpio_read(GPIO_REQUEST_DFU1);
}
bool platform_get_request_dfu2(void) // Formerly platform_get_menu_key()
{
return !gpio_read(GPIO_REQUEST_DFU2);
}
int platform_translate_key_selector(uint32_t key_selector, uint32_t *key_opts)
{
bool production = platform_get_current_production_mode();
switch (key_selector) {
case IMAGE_KEYBAG_SELECTOR_PROD :
if (!production) return -1;
break;
case IMAGE_KEYBAG_SELECTOR_DEV :
if (production) return -1;
break;
default :
return -1;
}
*key_opts = AES_KEY_TYPE_GID0 | AES_KEY_SIZE_256;
return 0;
}
bool platform_set_usb_brick_detect(int select)
{
#if WITH_HW_USBPHY
return usbphy_set_dpdm_monitor(select);
#else
return false;
#endif
}
void platform_disable_keys(uint32_t gid, uint32_t uid)
{
uint32_t keydis = (((gid & 0x3) << 1) | ((uid & 0x1) << 0));
dprintf(DEBUG_SPEW, "gid:0x%08x uid:0x%08x\n", gid, uid);
if (!gid && !uid) return;
rMINIPMGR_SIO_AES_DISABLE = keydis;
}
bool platform_keys_disabled(uint32_t gid, uint32_t uid)
{
uint32_t key_disabled;
dprintf(DEBUG_SPEW, "gid:0x%08x uid:0x%08x\n", gid, uid);
if (!gid && !uid) return true;
key_disabled = rMINIPMGR_SIO_AES_DISABLE;
return (key_disabled & (((gid & 0x3) << 1) | ((uid & 0x1) << 0)));
}
void platform_demote_production()
{
chipid_clear_production_mode();
}
#if APPLICATION_IBOOT
bool platform_is_pre_lpddr4(void)
{
return false;
}
uint64_t platform_get_memory_size(void)
{
uint64_t memory_size;
// If rPMGR_SCRATCH0[2] set then the memory was inited, we have memory size info
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) != 0) {
memory_size = (((uint64_t)rPMGR_SCRATCH_MEM_INFO) & 0xffff) * 1024 * 1024;
}
else {
panic("memory not yet inited\n");
}
return memory_size;
}
uint8_t platform_get_memory_manufacturer_id(void)
{
// If rPMGR_SCRATCH0[2] set then the memory was inited, we have memory vendor-id info
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) != 0) {
return ((rPMGR_SCRATCH_MEM_INFO >> 24) & 0xff);
}
else {
panic("memory not yet inited\n");
}
}
void platform_set_memory_info_with_revids(uint8_t manuf_id, uint64_t memory_size, uint8_t rev_id, uint8_t rev_id2)
{
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) == 0) {
rPMGR_SCRATCH_MEM_INFO = 0;
}
rPMGR_SCRATCH_MEM_INFO = (manuf_id << 24) | ((rev_id2 & 0xF) << 20) | ((rev_id & 0xF) << 16) | (memory_size & 0xffff);
rPMGR_SCRATCH0 |= kPlatformScratchFlagMemoryInfo;
}
void platform_get_memory_rev_ids(uint8_t *rev_id, uint8_t *rev_id2)
{
// If rPMGR_SCRATCH0[2] set then the memory was inited, we have memory rev_id info
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) == 0)
panic("memory not yet inited\n");
else {
if (rev_id && rev_id2) {
uint8_t rev_info = (rPMGR_SCRATCH_MEM_INFO >> 16) & 0xFF;
*rev_id = rev_info & 0xF;
*rev_id2 = rev_info >> 4;
}
}
}
#endif
extern void boot_handoff_trampoline(void *entry, void *arg);
void *platform_get_boot_trampoline(void)
{
#ifdef BOOT_TRAMPOLINE_BASE
return (void *)BOOT_TRAMPOLINE_BASE;
#else
return (void *)boot_handoff_trampoline;
#endif
}
int32_t platform_restore_system(void)
{
panic("not supported");
}
void platform_asynchronous_exception(void)
{
ccc_handle_asynchronous_exception();
}
int32_t platform_get_boot_manifest_hash(uint8_t *boot_manifest_hash)
{
volatile uint32_t *pScratch;
uint32_t *pHash;
RELEASE_ASSERT(boot_manifest_hash != NULL);
ASSERT((&rPMGR_SCRATCH_BOOT_MANIFEST_HASH_LAST - &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_FIRST + 1)
== PMGR_SCRATCH_BOOT_MANIFEST_REGISTERS);
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagObjectManifestHashValid) != 0) {
pHash = &((uint32_t *)boot_manifest_hash)[0];
pScratch = &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_FIRST;
// Copy the boot manifest hash from the scratch registers.
while (pScratch <= &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_LAST) {
*pHash++ = *pScratch++;
}
return 0;
}
return -1;
}
int32_t platform_set_boot_manifest_hash(const uint8_t *boot_manifest_hash)
{
volatile uint32_t *pScratch = &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_FIRST;
uint32_t *pHash;
ASSERT((&rPMGR_SCRATCH_BOOT_MANIFEST_HASH_LAST - &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_FIRST + 1)
== PMGR_SCRATCH_BOOT_MANIFEST_REGISTERS);
if (boot_manifest_hash != NULL) {
pHash = &((uint32_t *)boot_manifest_hash)[0];
// Copy the boot manifest hash to the scratch registers.
while (pScratch <= &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_LAST) {
*pScratch++ = *pHash++;
}
rPMGR_SCRATCH0 |= kPlatformScratchFlagObjectManifestHashValid;
} else {
// Clear the boot manifest hash in the scratch registers.
while (pScratch <= &rPMGR_SCRATCH_BOOT_MANIFEST_HASH_LAST) {
*pScratch++ = 0;
}
rPMGR_SCRATCH0 &= ~kPlatformScratchFlagObjectManifestHashValid;
}
return 0;
}
#if WITH_SIDP
// Returns true if Silicon Data Protection ROM manifest is locked.
bool platform_sidp_rom_manifest_locked(void)
{
return (rMINIPMGR_SEAL_CTL_A & MINIPMGR_SECURITY_SEAL_CTL_A_LOCK_UMASK) != 0;
}
// Returns true if Silicon Data Protection boot manifest is locked.
bool platform_sidp_boot_manifest_locked(void)
{
return (rMINIPMGR_SEAL_CTL_B & MINIPMGR_SECURITY_SEAL_CTL_B_LOCK_UMASK) != 0;
}
#if APPLICATION_SECUREROM
// Lock the Silicon Data Protection ROM manifest
void platform_sidp_lock_rom_manifest(void)
{
// Can't already be locked.
RELEASE_ASSERT(!platform_sidp_rom_manifest_locked());
rMINIPMGR_SEAL_CTL_A |= MINIPMGR_SECURITY_SEAL_CTL_A_LOCK_UMASK;
}
// Set the Silicon Data Protection ROM manifest
void platform_sidp_set_rom_manifest(const uint32_t *manifest_hash, size_t manifest_hash_size)
{
// Can't already be locked.
RELEASE_ASSERT(!platform_sidp_rom_manifest_locked());
volatile uint32_t *seal_reg = &rMINIPMGR_SEAL_DATA_A_FIRST;
if (manifest_hash == NULL) {
// Clear the seal data A registers
while (seal_reg <= &rMINIPMGR_SEAL_DATA_A_LAST) {
*seal_reg++ = 0;
}
// Mark the seal as invalid.
rMINIPMGR_SEAL_CTL_A &= ~MINIPMGR_SECURITY_SEAL_CTL_A_VALID_UMASK;
} else {
const uint32_t *manifest_end = manifest_hash + (manifest_hash_size / sizeof(uint32_t));
// Copy the manifest hash to seal data A registers.
do {
// Copy the manifest to seal A registers. If we run out of
// manifest before we run out of seal regsiters, store zero.
if (manifest_hash < manifest_end) {
*seal_reg++ = *manifest_hash++;
} else {
*seal_reg++ = 0;
}
} while (seal_reg <= &rMINIPMGR_SEAL_DATA_A_LAST);
// Mark the seal data as valid.
rMINIPMGR_SEAL_CTL_A |= MINIPMGR_SECURITY_SEAL_CTL_A_VALID_UMASK;
}
}
#else // !APPLICATION_SECUREROM
// Lock the Silicon Data Protection boot manifest
void platform_sidp_lock_boot_manifest(void)
{
// Can't already be locked.
RELEASE_ASSERT(!platform_sidp_boot_manifest_locked());
rMINIPMGR_SEAL_CTL_B |= MINIPMGR_SECURITY_SEAL_CTL_B_LOCK_UMASK;
dprintf(DEBUG_SPEW, "SiDP boot manifest locked\n");
}
// Set the Silicon Data Protection boot manifest
void platform_sidp_set_boot_manifest(const uint32_t *manifest_hash, size_t manifest_hash_size)
{
// Can't already be locked.
RELEASE_ASSERT(!platform_sidp_boot_manifest_locked());
volatile uint32_t *seal_reg = &rMINIPMGR_SEAL_DATA_B_FIRST;
if (manifest_hash == NULL) {
// Clear the seal data B registers
while (seal_reg <= &rMINIPMGR_SEAL_DATA_B_LAST) {
*seal_reg++ = 0;
}
// Mark the seal as invalid.
rMINIPMGR_SEAL_CTL_B &= ~MINIPMGR_SECURITY_SEAL_CTL_B_VALID_UMASK;
dprintf(DEBUG_SPEW, "SiDP boot manifest marked invalid\n");
} else {
const uint32_t *manifest_end = manifest_hash + (manifest_hash_size / sizeof(uint32_t));
// Copy the manifest hash to seal data B registers.
do {
// Copy the manifest to seal B registers. If we run out of
// manifest before we run out of seal regsiters, store zero.
if (manifest_hash < manifest_end) {
*seal_reg++ = *manifest_hash++;
} else {
*seal_reg++ = 0;
}
} while (seal_reg <= &rMINIPMGR_SEAL_DATA_B_LAST);
// Mark the seal data as valid.
rMINIPMGR_SEAL_CTL_B |= MINIPMGR_SECURITY_SEAL_CTL_B_VALID_UMASK;
dprintf(DEBUG_SPEW, "SiDP boot manifest marked valid\n");
}
}
// Set the Silicon Data Protection mix-n-match attribute
void platform_sidp_set_mix_n_match(void)
{
rMINIPMGR_SET_ONLY |= MINIPMGR_SET_ONLY_MIX_N_MATCH;
dprintf(DEBUG_SPEW, "SiDP boot manifest min-n-match state set\n");
}
#endif // APPLICATION_IBOOT
#endif // WITH_SIDP
bool platform_get_mix_n_match_prevention_status(void)
{
return ((rPMGR_SCRATCH0 & kPlatformScratchFlagVerifyManifestHash) ? true : false);
}
void platform_set_mix_n_match_prevention_status(bool mix_n_match_prevented)
{
if (mix_n_match_prevented)
rPMGR_SCRATCH0 |= kPlatformScratchFlagVerifyManifestHash;
else
rPMGR_SCRATCH0 &= ~kPlatformScratchFlagVerifyManifestHash;
}
void platform_set_consistent_debug_root_pointer(uint32_t root)
{
rMINIPMGR_SCRATCH1 = root;
}
int platform_convert_voltages(int buck, uint32_t count, uint32_t *voltages)
{
#if SUPPORT_FPGA
uint32_t index;
for (index = 0; index < count; index++)
power_get_buck_value_fpga(buck, voltages[index], &voltages[index]);
return 0;
#elif WITH_HW_POWER
int rail;
uint32_t index;
if (voltages == 0) return -1;
if (0 != power_convert_buck_to_rail(buck, &rail))
return -1;
for (index = 0; index < count; index++) {
if (voltages[index] == 0)
continue;
if (0 != power_get_rail_value(rail, voltages[index], &voltages[index]))
return -1;
}
return 0;
#else
return -1;
#endif
}
int platform_get_cpu_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_cpu_voltage(cnt);
}
return 0;
}
int platform_get_soc_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_soc_voltage(cnt);
}
return 0;
}
uintptr_t platform_get_memory_region_base_optional(memory_region_type_t region)
{
uintptr_t base;
switch (region) {
case kMemoryRegion_Panic:
base = PANIC_BASE;
break;
case kMemoryRegion_StorageProcessor:
base = ASP_BASE;
break;
case kMemoryRegion_SecureProcessor:
base = TZ0_BASE;
break;
case kMemoryRegion_Kernel:
base = TZ0_BASE + TZ0_SIZE;
// XXX: kernel must be loaded at a 32 MB aligned address. We'll want to reclaim this
// memory, but for now, just throw it away
// <rdar://problem/15766644> Maui: Align kernel to 32 MB without wasting memory
base += 0x2000000-1;
base &= ~(0x2000000ULL - 1);
break;
case kMemoryRegion_PageTables:
base = PAGE_TABLES_BASE;
break;
case kMemoryRegion_Heap:
base = HEAP_BASE;
break;
case kMemoryRegion_Stacks:
base = STACKS_BASE;
break;
#if APPLICATION_IBOOT
case kMemoryRegion_ConsistentDebug:
base = CONSISTENT_DEBUG_BASE;
break;
case kMemoryRegion_SleepToken:
base = SLEEP_TOKEN_BUFFER_BASE;
break;
case kMemoryRegion_DramConfig:
base = DRAM_CONFIG_SEQ_BASE;
break;
case kMemoryRegion_Display:
base = PANIC_BASE - DISPLAY_SIZE;
break;
case kMemoryRegion_iBoot:
base = IBOOT_BASE;
break;
case kMemoryRegion_AOP:
base = AOP_SRAM_BASE_ADDR;
break;
case kMemoryRegion_Reconfig:
base = AOP_RECONFIG_REGION_BASE_ADDR;
break;
#endif
default:
base = (uintptr_t)-1;
break;
}
return base;
}
size_t platform_get_memory_region_size_optional(memory_region_type_t region)
{
size_t size;
switch (region) {
case kMemoryRegion_Panic:
size = PANIC_SIZE;
break;
case kMemoryRegion_StorageProcessor:
size = ASP_SIZE;
break;
case kMemoryRegion_SecureProcessor:
size = TZ0_SIZE;
break;
case kMemoryRegion_Kernel:
size = DISPLAY_BASE - platform_get_memory_region_base(kMemoryRegion_Kernel);
break;
case kMemoryRegion_PageTables:
size = PAGE_TABLES_SIZE;
break;
case kMemoryRegion_Heap:
size = HEAP_SIZE;
break;
case kMemoryRegion_Stacks:
size = STACKS_SIZE;
break;
#if APPLICATION_IBOOT
case kMemoryRegion_ConsistentDebug:
size = CONSISTENT_DEBUG_SIZE;
break;
case kMemoryRegion_SleepToken:
size = SLEEP_TOKEN_BUFFER_SIZE;
break;
case kMemoryRegion_DramConfig:
size = DRAM_CONFIG_SEQ_SIZE;
break;
case kMemoryRegion_Display:
size = DISPLAY_SIZE;
break;
case kMemoryRegion_iBoot:
size = IBOOT_SIZE;
break;
case kMemoryRegion_AOP:
size = AOP_RECONFIG_REGION_BASE_ADDR - AOP_SRAM_BASE_ADDR;
break;
case kMemoryRegion_Reconfig:
size = AOP_RECONFIG_REGION_SIZE;
break;
#endif
default:
size = (size_t)-1;
break;
}
return size;
}
#if defined(WITH_MENU) && WITH_MENU
int do_sleep_token_test(int argc, struct cmd_arg *args)
{
*(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA0) = 0;
*(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA4) = 0;
security_create_sleep_token(SLEEP_TOKEN_BUFFER_BASE + 0x90);
*(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA0) = 0x12345678;
*(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA4) = 0xaabbccdd;
dprintf(DEBUG_INFO, "original info buffer: %#x %#x\n", *(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA0), *(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA4));
if (security_validate_sleep_token(SLEEP_TOKEN_BUFFER_BASE + 0x90) == false) {
dprintf(DEBUG_INFO, "failed to validate token\n");
return 0;
}
dprintf(DEBUG_INFO, "saved info buffer: %#x %#x\n", *(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA0), *(uint32_t *)(SLEEP_TOKEN_BUFFER_BASE + 0xA4));
return 0;
}
MENU_COMMAND_DEBUG(sleep_token, do_sleep_token_test, "sleep token test - creates and validate it", NULL);
#endif
int platform_get_cpu_ram_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_cpu_sram_voltage(cnt);
}
return 0;
}
int platform_get_gpu_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_gpu_voltage(cnt);
}
return 0;
}
int platform_get_gpu_ram_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_gpu_sram_voltage(cnt);
}
return 0;
}
int platform_get_ram_voltages(uint32_t count, uint32_t *voltages)
{
uint32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_sram_voltage(cnt);
}
return 0;
}
/*
* Gets equivalent mV for a given DWI value for a particular buck.
* PMU code should handle the special case for GPU buck.
*/
int platform_get_dwi_to_mv(int buck, uint32_t dwival)
{
#if SUPPORT_FPGA
return power_convert_dwi_to_mv_fpga(buck, dwival);
#elif WITH_HW_POWER
int rail;
if (0 != power_convert_buck_to_rail(buck, &rail))
return -1;
return power_convert_dwi_to_mv(rail, dwival);
#else
return -1;
#endif
}
static void platform_init_boot_strap(void)
{
volatile uint32_t boot_strap, chip_board_id, gpio_board_id, boot_config;
// If rPMGR_SCRATCH0[0] set then boot strap already valid
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagBootStrap) != 0) return;
gpio_configure(GPIO_BOOT_CONFIG0, GPIO_CFG_IN);
gpio_configure(GPIO_BOOT_CONFIG1, GPIO_CFG_IN);
gpio_configure(GPIO_BOOT_CONFIG2, GPIO_CFG_IN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG0, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG1, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG2, GPIO_PDN);
platform_power_spin(100); // Wait 100us
chip_board_id = chipid_get_board_id();
gpio_board_id = gpio_get_board_id();
boot_config =
(gpio_read(GPIO_BOOT_CONFIG2) << 2) |
(gpio_read(GPIO_BOOT_CONFIG1) << 1) |
(gpio_read(GPIO_BOOT_CONFIG0) << 0);
gpio_configure(GPIO_BOOT_CONFIG0, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG1, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG2, GPIO_CFG_DFLT);
boot_strap = (((chip_board_id << 5) | gpio_board_id) << 16) |
(boot_config << 8) |
(0x01 << 0);
rPMGR_SCRATCH0 = (rPMGR_SCRATCH0 & 0xFF000000) | (boot_strap & 0x00FFFFFF);
}
#if WITH_BOOT_XNU
static void platform_bootprep_darwin(void)
{
#if PRODUCT_IBOOT || PRODUCT_IBEC
extern addr_t gKernelEntry; // Kernel entry point
#if WITH_PAINT
if (paint_color_map_is_invalid())
panic("Previous DClr errors prevent OS booting");
#endif
/* 1. Setup trustzones */
/* clean-invalidate TZ0 region */
platform_cache_operation((CACHE_CLEAN | CACHE_INVALIDATE), (void *)TZ0_BASE, TZ0_SIZE);
/* create sleep token */
/* already created by load_kernelcache call */
/* program values */
for (uint32_t i = 0; i < NUM_AMCCS; i++) {
rMCCLOCKREGION_TZ0BASEADDR(i) = TZ0_BASE >> 12;
rMCCLOCKREGION_TZ0ENDADDR(i) = (TZ0_BASE + TZ0_SIZE - 1) >> 12;
/* Lock TZ0 region. */
rMCCLOCKREGION_TZ0LOCK(i) = AMCC_MCC_LOCK_REGION_TZ0_LOCK_FLD_UMASK;
if ((rMCCLOCKREGION_TZ0LOCK(i) & AMCC_MCC_LOCK_REGION_TZ0_LOCK_FLD_UMASK) == 0) {
panic("TZ0 failed to lock\n");
}
}
/* 2. Override IO_RVBAR - the kernel guarantees that it's reset vector
is at the beginning of the 4KB (yes, I really mean 4KB) page
containing the kernel entry point. */
ccc_override_and_lock_iorvbar(gKernelEntry & ~0xfff);
#if WITH_SIDP
/* Seal the manifest that authorizes the kernelcache. */
security_sidp_seal_boot_manifest(false);
#endif
#if 0 // !!!FIXME!!! <rdar://problem/19192084> H9: Implement AOP_S2R suspend/resume
// Update the calibration values in the sequence with values that were saved to AOP_SRAM
extern void dcs_restore_calibration_results(volatile uint32_t *save_region, uint32_t *sequence);
dcs_restore_calibration_results((volatile uint32_t *) MEMORY_CALIB_SAVE_BASE_ADDR, mcu_aop_awake_reconfig_restore);
// Insert Reconfig sequences
reconfig_init();
platform_awake_to_aop_ddr_pre_sequence_insert();
platform_awake_to_aop_ddr_post_sequence_insert();
platform_aop_ddr_to_s2r_aop_pre_sequence_insert();
platform_s2r_aop_to_aop_ddr_post_sequence_insert();
platform_aop_ddr_to_awake_pre_sequence_insert();
platform_aop_ddr_to_awake_post_sequence_insert();
/* XXX
- tunable values
- timeouts during state transitions
- lockdown regions
*/
#endif // !!!FIXME!!!
#else // !(PRODUCT_IBOOT || PRODUCT_IBEC)
// Booting the kernel is not supported from anything except iBoot and iBEC.
panic("Kernel booting not supported");
#endif // PRODUCT_IBOOT || PRODUCT_IBEC
}
#endif // WITH_BOOT_XNU
uint32_t platform_get_pcie_l1ss_ltr_threshold(void)
{
// Per Cayman tunables spec r0.11 (16 Apr 2015), section 7.2 3(a).
return 85;
}
uint32_t platform_get_pcie_l1ss_t_common_mode(void)
{
// Per Cayman tunables spec r0.11 (16 Apr 2015), section 7.2 2(b).
return 0;
}
static int power_convert_buck_to_rail(int buck, int *rail)
{
if (!rail)
return -1;
switch (buck) {
#if APPLICATION_IBOOT
#ifndef BUCK_CPU
#error BUCK_CPU not defined for this platform
#endif
#ifndef BUCK_CPU_RAM
#error BUCK_CPU_RAM not defined for this platform
#endif
#ifndef BUCK_SOC
#error BUCK_SOC not defined for this platform
#endif
#ifndef BUCK_GPU
#error BUCK_GPU not defined for this platform
#endif
#ifndef BUCK_GPU_RAM
#error BUCK_GPU_RAM not defined for this platform
#endif
case BUCK_CPU:
*rail = POWER_RAIL_CPU;
break;
case BUCK_CPU_RAM:
*rail = POWER_RAIL_CPU_RAM;
break;
case BUCK_SOC:
*rail = POWER_RAIL_SOC;
break;
case BUCK_GPU:
*rail = POWER_RAIL_GPU;
break;
case BUCK_GPU_RAM:
*rail = POWER_RAIL_GPU_RAM;
break;
#endif
default:
return -1;
}
return 0;
}
#if SUPPORT_FPGA
static void power_get_buck_value_fpga(int buck, uint32_t mv, uint32_t *val)
{
if (mv == 0) {
*val = 0;
} else {
switch(buck) {
#if APPLICATION_IBOOT
case BUCK_CPU:
case BUCK_GPU:
*val = (((mv-500)*1000)+3124)/3125;
break;
#endif
default:
*val = (((mv-600)*1000)+3124)/3125;
break;
}
}
return;
}
static int power_convert_dwi_to_mv_fpga(unsigned int buck, uint32_t dwival)
{
int val = 0;
#if APPLICATION_IBOOT
if (buck == BUCK_GPU) {
val = (dwival == 0) ? 0 : (500000 + (3125 * dwival))/1000;
}
#endif
return val;
}
#endif
#if WITH_BOOT_XNU
static void platform_awake_to_aop_ddr_pre_sequence_insert()
{
reconfig_command_raw(AWAKE_AOP_DDR_PRE, awake_to_aop_ddr_pre, sizeof(awake_to_aop_ddr_pre)/sizeof(uint32_t));
reconfig_commit(AWAKE_AOP_DDR_PRE);
}
static void platform_awake_to_aop_ddr_post_sequence_insert()
{
reconfig_command_raw(AWAKE_AOP_DDR_POST, awake_to_aop_ddr_post, sizeof(awake_to_aop_ddr_post)/sizeof(uint32_t));
reconfig_commit(AWAKE_AOP_DDR_POST);
}
static void platform_aop_ddr_to_s2r_aop_pre_sequence_insert()
{
reconfig_command_raw(AOP_DDR_S2R_AOP_PRE, aop_ddr_to_s2r_aop_pre, sizeof(aop_ddr_to_s2r_aop_pre)/sizeof(uint32_t));
reconfig_commit(AOP_DDR_S2R_AOP_PRE);
}
static void platform_s2r_aop_to_aop_ddr_post_sequence_insert()
{
reconfig_command_raw(S2R_AOP_AOP_DDR_POST, s2r_aop_to_aop_ddr_post, sizeof(s2r_aop_to_aop_ddr_post)/sizeof(uint32_t));
// TZ lock region inserted here
for (uint32_t i = 0; i < NUM_AMCCS; i++) {
reconfig_command_write(S2R_AOP_AOP_DDR_POST, MCCLOCKREGION_TZ0BASEADDR(i), TZ0_BASE>>12, 0);
reconfig_command_write(S2R_AOP_AOP_DDR_POST, MCCLOCKREGION_TZ0ENDADDR(i), (TZ0_BASE + TZ0_SIZE - 1)>>12, 0);
reconfig_command_write(S2R_AOP_AOP_DDR_POST, MCCLOCKREGION_TZ0LOCK(i), 1, 0);
reconfig_command_read(S2R_AOP_AOP_DDR_POST, MCCLOCKREGION_TZ0LOCK(i), 1, 1, 255, 0);
}
reconfig_command_raw(S2R_AOP_AOP_DDR_POST, s2r_aop_to_aop_ddr_post_2, sizeof(s2r_aop_to_aop_ddr_post_2)/sizeof(uint32_t));
reconfig_command_raw(S2R_AOP_AOP_DDR_POST, mcu_aop_ddr_reconfig, sizeof(mcu_aop_ddr_reconfig)/sizeof(uint32_t));
reconfig_command_raw(S2R_AOP_AOP_DDR_POST, s2r_aop_to_aop_ddr_post_3, sizeof(s2r_aop_to_aop_ddr_post_3)/sizeof(uint32_t));
reconfig_commit(S2R_AOP_AOP_DDR_POST);
}
static void platform_aop_ddr_to_awake_pre_sequence_insert()
{
reconfig_command_raw(AOP_DDR_AWAKE_PRE, aop_ddr_to_awake_pre, sizeof(aop_ddr_to_awake_pre)/sizeof(uint32_t));
reconfig_commit(AOP_DDR_AWAKE_PRE);
}
static void platform_aop_ddr_to_awake_post_sequence_insert()
{
#if !SUPPORT_FPGA
reconfig_command_raw(AOP_DDR_AWAKE_POST, mcu_aop_awake_reconfig_pre_restore, sizeof(mcu_aop_awake_reconfig_pre_restore)/sizeof(uint32_t));
reconfig_command_raw(AOP_DDR_AWAKE_POST, mcu_aop_awake_reconfig_restore, sizeof(mcu_aop_awake_reconfig_restore)/sizeof(uint32_t));
reconfig_command_raw(AOP_DDR_AWAKE_POST, mcu_aop_awake_reconfig_post_restore, sizeof(mcu_aop_awake_reconfig_post_restore)/sizeof(uint32_t));
#endif
reconfig_command_raw(AOP_DDR_AWAKE_POST, aop_ddr_to_awake_post, sizeof(aop_ddr_to_awake_post)/sizeof(uint32_t));
reconfig_command_write(AOP_DDR_AWAKE_POST, CCC_CPU0_SYS_BASE_ADDR + ACC_CPU0_IMPL_IO_RVBAR_OFFSET, (TZ0_BASE + TZ0_SIZE), 1);
reconfig_command_raw(AOP_DDR_AWAKE_POST, aop_ddr_to_awake_post_2, sizeof(aop_ddr_to_awake_post_2)/sizeof(uint32_t));
reconfig_commit(AOP_DDR_AWAKE_POST);
}
#endif // WITH_BOOT_XNU
#if WITH_TARGET_CONFIG
// The target's rules.mk sets the high SoC voltage point
#ifndef TARGET_BOOT_SOC_VOLTAGE
#error TARGET_BOOT_SOC_VOLTAGE not defined by the target
#endif
uint32_t platform_get_base_soc_voltage(void)
{
return chipid_get_soc_voltage(TARGET_BOOT_SOC_VOLTAGE);
}
// The target's rules.mk sets the high CPU voltage point
#ifndef TARGET_BOOT_CPU_VOLTAGE
#error TARGET_BOOT_CPU_VOLTAGE not defined by the target
#endif
uint32_t platform_get_base_cpu_voltage(void)
{
return chipid_get_cpu_voltage(TARGET_BOOT_CPU_VOLTAGE);
}
// The target's rules.mk sets the high RAM voltage point
#ifndef TARGET_BOOT_RAM_VOLTAGE
#error TARGET_BOOT_RAM_VOLTAGE not defined by the target
#endif
uint32_t platform_get_base_ram_voltage(void)
{
return chipid_get_sram_voltage(TARGET_BOOT_RAM_VOLTAGE);
}
#endif
#if defined(WITH_MENU) && WITH_MENU
static int get_total_leakage(int argc, struct cmd_arg *args)
{
dprintf(DEBUG_INFO, "total leakage: %dmA\n", chipid_get_total_rails_leakage());
return 0;
}
MENU_COMMAND_DEBUG(leakage, get_total_leakage, "total rails leakage read from fuse", NULL);
#endif