updated to recents

master
Chris Nutter 2021-03-11 23:41:44 -08:00
parent 90cfba2c6f
commit 50a1039983
419 changed files with 18150 additions and 415 deletions

View File

@ -1,415 +0,0 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 21.1) (preloaded format=pdflatex 2021.2.9) 23 FEB 2021 18:52
entering extended mode
**Z:/Projects/GitHub/homework-and-stuffs/personal/nuzlocke-list/document.tex
(Z:/Projects/GitHub/homework-and-stuffs/personal/nuzlocke-list/document.tex
LaTeX2e <2020-10-01> patch level 4
L3 programming layer <2021-01-09> xparse <2020-03-03>
(E:\Applications\MiKTeX\tex/latex/base\article.cls
Document Class: article 2020/04/10 v1.4m Standard LaTeX document class
(E:\Applications\MiKTeX\tex/latex/base\size10.clo
File: size10.clo 2020/04/10 v1.4m Standard LaTeX file (size option)
)
\c@part=\count177
\c@section=\count178
\c@subsection=\count179
\c@subsubsection=\count180
\c@paragraph=\count181
\c@subparagraph=\count182
\c@figure=\count183
\c@table=\count184
\abovecaptionskip=\skip47
\belowcaptionskip=\skip48
\bibindent=\dimen138
)
(E:\Applications\MiKTeX\tex/latex/geometry\geometry.sty
Package: geometry 2020/01/02 v5.9 Page Geometry
(E:\Applications\MiKTeX\tex/latex/graphics\keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks15
)
(E:\Applications\MiKTeX\tex/generic/iftex\ifvtex.sty
Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead.
(E:\Applications\MiKTeX\tex/generic/iftex\iftex.sty
Package: iftex 2020/03/06 v1.0d TeX engine tests
))
\Gm@cnth=\count185
\Gm@cntv=\count186
\c@Gm@tempcnt=\count187
\Gm@bindingoffset=\dimen139
\Gm@wd@mp=\dimen140
\Gm@odd@mp=\dimen141
\Gm@even@mp=\dimen142
\Gm@layoutwidth=\dimen143
\Gm@layoutheight=\dimen144
\Gm@layouthoffset=\dimen145
\Gm@layoutvoffset=\dimen146
\Gm@dimlist=\toks16
(E:\Applications\MiKTeX\tex/latex/geometry\geometry.cfg))
(E:\Applications\MiKTeX\tex/latex/graphics\graphicx.sty
Package: graphicx 2020/09/09 v1.2b Enhanced LaTeX Graphics (DPC,SPQR)
(E:\Applications\MiKTeX\tex/latex/graphics\graphics.sty
Package: graphics 2020/08/30 v1.4c Standard LaTeX Graphics (DPC,SPQR)
(E:\Applications\MiKTeX\tex/latex/graphics\trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(E:\Applications\MiKTeX\tex/latex/graphics-cfg\graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 105.
(E:\Applications\MiKTeX\tex/latex/graphics-def\pdftex.def
File: pdftex.def 2020/10/05 v1.2a Graphics/color driver for pdftex
))
\Gin@req@height=\dimen147
\Gin@req@width=\dimen148
)
(E:\Applications\MiKTeX\tex/latex/hyperref\hyperref.sty
Package: hyperref 2020-05-15 v7.00e Hypertext links for LaTeX
(E:\Applications\MiKTeX\tex/generic/ltxcmds\ltxcmds.sty
Package: ltxcmds 2020-05-10 v1.25 LaTeX kernel commands for general use (HO)
)
(E:\Applications\MiKTeX\tex/generic/pdftexcmds\pdftexcmds.sty
Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO
)
(E:\Applications\MiKTeX\tex/generic/infwarerr\infwarerr.sty
Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO)
)
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
)
(E:\Applications\MiKTeX\tex/generic/kvsetkeys\kvsetkeys.sty
Package: kvsetkeys 2019/12/15 v1.18 Key value parser (HO)
)
(E:\Applications\MiKTeX\tex/generic/kvdefinekeys\kvdefinekeys.sty
Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO)
)
(E:\Applications\MiKTeX\tex/generic/pdfescape\pdfescape.sty
Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO)
)
(E:\Applications\MiKTeX\tex/latex/hycolor\hycolor.sty
Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO)
)
(E:\Applications\MiKTeX\tex/latex/letltxmacro\letltxmacro.sty
Package: letltxmacro 2019/12/03 v1.6 Let assignment for LaTeX macros (HO)
)
(E:\Applications\MiKTeX\tex/latex/auxhook\auxhook.sty
Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO)
)
(E:\Applications\MiKTeX\tex/latex/kvoptions\kvoptions.sty
Package: kvoptions 2020-10-07 v3.14 Key value format for package options (HO)
)
\@linkdim=\dimen149
\Hy@linkcounter=\count188
\Hy@pagecounter=\count189
(E:\Applications\MiKTeX\tex/latex/hyperref\pd1enc.def
File: pd1enc.def 2020-05-15 v7.00e Hyperref: PDFDocEncoding definition (HO)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
)
(E:\Applications\MiKTeX\tex/generic/intcalc\intcalc.sty
Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO)
)
(E:\Applications\MiKTeX\tex/generic/etexcmds\etexcmds.sty
Package: etexcmds 2019/12/15 v1.7 Avoid name clashes with e-TeX commands (HO)
)
\Hy@SavedSpaceFactor=\count190
Package hyperref Info: Hyper figures OFF on input line 4464.
Package hyperref Info: Link nesting OFF on input line 4469.
Package hyperref Info: Hyper index ON on input line 4472.
Package hyperref Info: Plain pages OFF on input line 4479.
Package hyperref Info: Backreferencing OFF on input line 4484.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4717.
\c@Hy@tempcnt=\count191
(E:\Applications\MiKTeX\tex/latex/url\url.sty
\Urlmuskip=\muskip16
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 5076.
\XeTeXLinkMargin=\dimen150
(E:\Applications\MiKTeX\tex/generic/bitset\bitset.sty
Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO)
(E:\Applications\MiKTeX\tex/generic/bigintcalc\bigintcalc.sty
Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO
)
))
\Fld@menulength=\count192
\Field@Width=\dimen151
\Fld@charsize=\dimen152
Package hyperref Info: Hyper figures OFF on input line 6347.
Package hyperref Info: Link nesting OFF on input line 6352.
Package hyperref Info: Hyper index ON on input line 6355.
Package hyperref Info: backreferencing OFF on input line 6362.
Package hyperref Info: Link coloring OFF on input line 6367.
Package hyperref Info: Link coloring with OCG OFF on input line 6372.
Package hyperref Info: PDF/A mode OFF on input line 6377.
LaTeX Info: Redefining \ref on input line 6417.
LaTeX Info: Redefining \pageref on input line 6421.
(E:\Applications\MiKTeX\tex/latex/base\atbegshi-ltx.sty
Package: atbegshi-ltx 2020/08/17 v1.0a Emulation of the original atbegshi packa
ge
with kernel methods
)
\Hy@abspage=\count193
\c@Item=\count194
\c@Hfootnote=\count195
)
Package hyperref Info: Driver (autodetected): hpdftex.
(E:\Applications\MiKTeX\tex/latex/hyperref\hpdftex.def
File: hpdftex.def 2020-05-15 v7.00e Hyperref driver for pdfTeX
(E:\Applications\MiKTeX\tex/latex/base\atveryend-ltx.sty
Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atvery packag
e
with kernel methods
)
\Fld@listcount=\count196
\c@bookmark@seq@number=\count197
(E:\Applications\MiKTeX\tex/latex/rerunfilecheck\rerunfilecheck.sty
Package: rerunfilecheck 2019/12/05 v1.9 Rerun checks for auxiliary files (HO)
(E:\Applications\MiKTeX\tex/generic/uniquecounter\uniquecounter.sty
Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO)
)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
86.
)
\Hy@SectionHShift=\skip49
)
(E:\Applications\MiKTeX\tex/latex/listings\listings.sty
\lst@mode=\count198
\lst@gtempboxa=\box47
\lst@token=\toks17
\lst@length=\count199
\lst@currlwidth=\dimen153
\lst@column=\count266
\lst@pos=\count267
\lst@lostspace=\dimen154
\lst@width=\dimen155
\lst@newlines=\count268
\lst@lineno=\count269
\lst@maxwidth=\dimen156
(E:\Applications\MiKTeX\tex/latex/listings\lstmisc.sty
File: lstmisc.sty 2020/03/24 1.8d (Carsten Heinz)
\c@lstnumber=\count270
\lst@skipnumbers=\count271
\lst@framebox=\box48
)
(E:\Applications\MiKTeX\tex/latex/listings\listings.cfg
File: listings.cfg 2020/03/24 1.8d listings configuration
))
Package: listings 2020/03/24 1.8d (Carsten Heinz)
(E:\Applications\MiKTeX\tex/latex/amsfonts\amssymb.sty
Package: amssymb 2013/01/14 v3.01 AMS font symbols
(E:\Applications\MiKTeX\tex/latex/amsfonts\amsfonts.sty
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\@emptytoks=\toks18
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98.
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
))
(E:\Applications\MiKTeX\tex/latex/mwe\mwe.sty
Package: mwe 2018/03/30 v0.5 Package to support minimal working examples (MWE)
(E:\Applications\MiKTeX\tex/latex/lipsum\lipsum.sty
(E:\Applications\MiKTeX\tex/latex/l3kernel\expl3.sty
Package: expl3 2021-01-09 L3 programming layer (loader)
(E:\Applications\MiKTeX\tex/latex/l3backend\l3backend-pdftex.def
File: l3backend-pdftex.def 2021-01-09 L3 backend support: PDF output (pdfTeX)
\l__kernel_color_stack_int=\count272
\l__pdf_internal_box=\box49
))
(E:\Applications\MiKTeX\tex/latex/l3packages/xparse\xparse.sty
Package: xparse 2020-10-27 L3 Experimental document command parser
(E:\Applications\MiKTeX\tex/latex/l3packages/xparse\xparse-generic.tex))
Package: lipsum 2019/01/02 v2.2 150 paragraphs of Lorem Ipsum dummy text
(E:\Applications\MiKTeX\tex/latex/lipsum\lipsum.ltd.tex
File: lipsum.ltd.tex 2019/01/02 v2.2 The Lorem ipsum dummy text
))
(E:\Applications\MiKTeX\tex/latex/blindtext\blindtext.sty
Package: blindtext 2012/01/06 V2.0 blindtext-Package
(E:\Applications\MiKTeX\tex/latex/latex-tools\xspace.sty
Package: xspace 2014/10/28 v1.13 Space after command names (DPC,MH)
)
\c@blindtext=\count273
\c@Blindtext=\count274
\c@blind@countparstart=\count275
\blind@countxx=\count276
\blindtext@numBlindtext=\count277
\blind@countyy=\count278
\c@blindlist=\count279
\c@blindlistlevel=\count280
\c@blindlist@level=\count281
\blind@listitem=\count282
\c@blind@listcount=\count283
\c@blind@levelcount=\count284
\blind@mathformula=\count285
\blind@Mathformula=\count286
\c@blind@randomcount=\count287
\c@blind@randommax=\count288
\c@blind@pangramcount=\count289
\c@blind@pangrammax=\count290
))
(E:\Applications\MiKTeX\tex/latex/enumitem\enumitem.sty
Package: enumitem 2019/06/20 v3.9 Customized lists
\labelindent=\skip50
\enit@outerparindent=\dimen157
\enit@toks=\toks19
\enit@inbox=\box50
\enit@count@id=\count291
\enitdp@description=\count292
)
(E:\Applications\MiKTeX\tex/latex/imakeidx\imakeidx.sty
Package: imakeidx 2016/10/15 v1.3e Package for typesetting indices in a synchro
nous mode
(E:\Applications\MiKTeX\tex/latex/xkeyval\xkeyval.sty
Package: xkeyval 2020/11/20 v2.8 package option processing (HA)
(E:\Applications\MiKTeX\tex/generic/xkeyval\xkeyval.tex
(E:\Applications\MiKTeX\tex/generic/xkeyval\xkvutils.tex
\XKV@toks=\toks20
\XKV@tempa@toks=\toks21
)
\XKV@depth=\count293
File: xkeyval.tex 2014/12/03 v2.7a key=value parser (HA)
))
(E:\Applications\MiKTeX\tex/generic/iftex\ifxetex.sty
Package: ifxetex 2019/10/25 v0.7 ifxetex legacy package. Use iftex instead.
)
(E:\Applications\MiKTeX\tex/generic/iftex\ifluatex.sty
Package: ifluatex 2019/10/25 v1.5 ifluatex legacy package. Use iftex instead.
)
(E:\Applications\MiKTeX\tex/latex/latex-tools\multicol.sty
Package: multicol 2019/12/09 v1.8y multicolumn formatting (FMi)
\c@tracingmulticols=\count294
\mult@box=\box51
\multicol@leftmargin=\dimen158
\c@unbalance=\count295
\c@collectmore=\count296
\doublecol@number=\count297
\multicoltolerance=\count298
\multicolpretolerance=\count299
\full@width=\dimen159
\page@free=\dimen160
\premulticols=\dimen161
\postmulticols=\dimen162
\multicolsep=\skip51
\multicolbaselineskip=\skip52
\partial@page=\box52
\last@line=\box53
\maxbalancingoverflow=\dimen163
\mult@rightbox=\box54
\mult@grightbox=\box55
\mult@gfirstbox=\box56
\mult@firstbox=\box57
\@tempa=\box58
\@tempa=\box59
\@tempa=\box60
\@tempa=\box61
\@tempa=\box62
\@tempa=\box63
\@tempa=\box64
\@tempa=\box65
\@tempa=\box66
\@tempa=\box67
\@tempa=\box68
\@tempa=\box69
\@tempa=\box70
\@tempa=\box71
\@tempa=\box72
\@tempa=\box73
\@tempa=\box74
\@tempa=\box75
\@tempa=\box76
\@tempa=\box77
\@tempa=\box78
\@tempa=\box79
\@tempa=\box80
\@tempa=\box81
\@tempa=\box82
\@tempa=\box83
\@tempa=\box84
\@tempa=\box85
\@tempa=\box86
\@tempa=\box87
\@tempa=\box88
\@tempa=\box89
\@tempa=\box90
\@tempa=\box91
\@tempa=\box92
\@tempa=\box93
\@tempa=\box94
\c@minrows=\count300
\c@columnbadness=\count301
\c@finalcolumnbadness=\count302
\last@try=\dimen164
\multicolovershoot=\dimen165
\multicolundershoot=\dimen166
\mult@nat@firstbox=\box95
\colbreak@box=\box96
\mc@col@check@num=\count303
))
! LaTeX Error: File `elsarticle.sty' not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: sty)
Enter file name: output.html
! LaTeX Error: File `output.html' not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: html)
Enter file name: output
! LaTeX Error: File `output.html' not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: html)
Enter file name: x
! Emergency stop.
<read *>
l.18
*** (cannot \read from terminal in nonstop modes)
Here is how much of TeX's memory you used:
7841 strings out of 479618
121034 string characters out of 2875417
578295 words of memory out of 3000000
24913 multiletter control sequences out of 15000+200000
403430 words of font info for 27 fonts, out of 3000000 for 9000
1141 hyphenation exceptions out of 8191
81i,0n,89p,298b,264s stack positions out of 5000i,500n,10000p,200000b,50000s
! ==> Fatal error occurred, no output PDF file produced!

View File

Before

Width:  |  Height:  |  Size: 448 KiB

After

Width:  |  Height:  |  Size: 448 KiB

Binary file not shown.

View File

@ -0,0 +1,30 @@
\documentclass[12pt]{article}
\usepackage[a4paper, total={7in, 10in}]{geometry}
\usepackage{graphicx}
\usepackage{abstract}
\usepackage{hyperref}
\usepackage{listings}
\usepackage{amssymb}
\usepackage{fancyhdr}
\usepackage{adjustbox}
\begin{document}
\section{Project Organization / Structure}
\subsection{Process Model}
This project utilizes an iterative development and deployment using SCRUM methodologies.
\begin{table}[!hbt]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Crash Avoidance System} & Planned Completion Date & Placed Under Change Control & Deliverable to Customer? & People Who Must Sign Off \\ \hline
Develop Crash Avoidance System (CAS) & December 31st, 2021 & No & & Project Manager Engineering Lead, Documentation Lead \\ \hline
Develop In-Flight Test of \\Crash Avoidance System (IFTCAS) & December 31st, 2022 & No & & Project Manager Engineering Lead, Documentation Lead \\ \hline
Incorporate Test Results and \\Associated Design Changes \\into Final System & December 31st, 2023 & No & & Project Manager Engineering Lead, Documentation Lead, Customer Approval \\ \hline
TBD & TBD & TBD & TBD & TBD \\ \hline
\end{tabular}
\end{table}
\end{document}

129
school/cpsc481/project1/.gitignore vendored Normal file
View File

@ -0,0 +1,129 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 Jared Dyreson
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,2 @@
# pacman-ai
A Pacman maze solving project for CS 481

View File

@ -0,0 +1 @@
https://github.com/JaredDyreson/pacman-ai/tree/82c7c34645774fa4ac86170e79805490e0ead724

View File

@ -0,0 +1 @@
v1.002

View File

@ -0,0 +1,88 @@
"""
Example implementation of backtracking search in Python
"""
class node:
def __init__(self, label: str):
if(not isinstance(label, str)):
raise ValueError
self.label = label
def __hash__(self):
return hash(self.label)
graph = {
"A": ["B", "C"],
"B": ["D", "E"],
"C": ["X", "Y"],
"D": [],
"E": [],
"X": [],
"Y": []
}
children = ["A", "B", "C", "D"]
d = ["A"]
s = ["B"]
nsl = ["C"]
def l_difference(*args):
if not(all([isinstance(i, list) for i in args])):
raise ValueError
container = []
for element in args:
subcontainer = [i for i in element if i not in container]
container.extend(subcontainer)
return container
def l_union(a: list, b: list):
# TODO : DUPLICATE CODE
# source : https://stackoverflow.com/questions/9792664/converting-a-list-to-a-set-changes-element-order
# find the union of two lists <- probably should use in Funnel
if(not isinstance(a, list) or
not isinstance(b, list)):
raise ValueError('two lists please')
return [x for x in a if x not in b]
def backtracking(starting: str, GD: list) -> list:
if(not isinstance(starting, str) or
not isinstance(GD, list)):
raise ValueError
state_list, new_state_list = [starting], [starting]
dead_ends = []
current_state = starting
if(current_state in GD):
return state_list
children = graph[current_state]
if(not children)
# open_nodes = ["A"]
# state_list = open_nodes
# new_state_list = open_nodes
# dead_ends = []
# current_state = "A"
# goal_states = ["X"]
while(state_list):
# current_state = state_list.pop()
print(current_state)
if(current_state in goal_states):
print(f'[complete] {state_list}') # should be return
children = graph[current_state]
if(not children):
while(state_list and current_state == state_list[0]):
dead_ends.append(current_state)
state_list.pop()
new_state_list.pop()
current_state = new_state_list[0]
state_list.append(current_state)
else:
new_state_list.extend(children)
current_state = new_state_list[0]
state_list.append(current_state)

View File

@ -0,0 +1,61 @@
"""
Example implementation of BFS in Python
"""
import unittest
graph = {
"A": ["B", "C"],
"B": ["D", "E"],
"C": ["X", "Y"],
"D": [],
"E": [],
"X": [],
"Y": []
}
def l_union(a: list, b: list):
# TODO : DUPLICATE CODE
# source : https://stackoverflow.com/questions/9792664/converting-a-list-to-a-set-changes-element-order
# find the union of two lists <- probably should use in Funnel
if(not isinstance(a, list) or
not isinstance(b, list)):
raise ValueError('two lists please')
return [x for x in a if x not in b]
def bfs(G: dict, S: list, GD: list) -> bool: # -> (TYPE BEING RETURNED)
# type enforcement
if(not isinstance(S, list) or # open nodes
not isinstance(GD, list) or # acceptance states
not isinstance(G, dict)): # graph in question
raise ValueError
X = None
open_nodes = S
goal_states = GD
closed = []
while(open_nodes):
X = open_nodes.pop()
if(X in goal_states):
return True
children = l_union(graph[X], open_nodes)
open_nodes.extend(children) # append the contents of the lookup while removing duplicates from both containers
closed.append(X)
return False
class TestBFS(unittest.TestCase):
def test_bfs_valid_dest(self):
S, GD = ["A"], ["X"]
self.assertTrue(bfs(graph, S, GD))
def test_bfs_invalid_dest(self):
S, GD = ["A"], ["Z"]
self.assertFalse(bfs(graph, S, GD))
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,60 @@
"""
Example implementation of DFS in Python
Components include:
X <- stores current state
open <- all nodes that we are allowed to push onto the stack
closed <- can no longer travel to
Please refer to L02, part 2 at 12:45 for further details
"""
graph = {
"A": ["B", "C"],
"B": ["D", "E"],
"C": ["X", "Y"],
"D": [],
"E": [],
"X": [],
"Y": []
}
def l_union(a: list, b: list):
# source : https://stackoverflow.com/questions/9792664/converting-a-list-to-a-set-changes-element-order
# find the union of two lists <- probably should use in Funnel
if(not isinstance(a, list) or
not isinstance(b, list)):
raise ValueError('two lists please')
return [x for x in a if x not in b]
# parameters have their desired types
def dfs(G: dict, S: list, GD: list) -> bool: # -> (TYPE BEING RETURNED)
# type enforcement
if(not isinstance(S, list) or
not isinstance(GD, list) or
not isinstance(G, dict)):
raise ValueError
X = None
open_nodes = S # renaming
goal_nodes = GD # renaming
closed = []
while(open_nodes): # while len(open_nodes) > 0, python is cool
X = open_nodes.pop()
if(X in goal_nodes):
return True
children = l_union(graph[X], open_nodes)
open_nodes[:0] = children # prepend the contents of the lookup while removing duplicates from both containers
closed.append(X) # current node exhausted
return False
resultant = dfs(graph, ["A"], ["X"])
if(resultant):
print("[INFO] We found a result")
else:
print("[ERROR] We could not find a result")

View File

@ -0,0 +1,358 @@
# autograder.py
# -------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# imports from python standard library
import grading
import imp
import optparse
import os
import re
import sys
import projectParams
import random
random.seed(0)
try:
from pacman import GameState
except:
pass
# register arguments and set default values
def readCommand(argv):
parser = optparse.OptionParser(description = 'Run public tests on student code')
parser.set_defaults(generateSolutions=False, edxOutput=False, gsOutput=False, muteOutput=False, printTestCase=False, noGraphics=False)
parser.add_option('--test-directory',
dest = 'testRoot',
default = 'test_cases',
help = 'Root test directory which contains subdirectories corresponding to each question')
parser.add_option('--student-code',
dest = 'studentCode',
default = projectParams.STUDENT_CODE_DEFAULT,
help = 'comma separated list of student code files')
parser.add_option('--code-directory',
dest = 'codeRoot',
default = "",
help = 'Root directory containing the student and testClass code')
parser.add_option('--test-case-code',
dest = 'testCaseCode',
default = projectParams.PROJECT_TEST_CLASSES,
help = 'class containing testClass classes for this project')
parser.add_option('--generate-solutions',
dest = 'generateSolutions',
action = 'store_true',
help = 'Write solutions generated to .solution file')
parser.add_option('--edx-output',
dest = 'edxOutput',
action = 'store_true',
help = 'Generate edX output files')
parser.add_option('--gradescope-output',
dest = 'gsOutput',
action = 'store_true',
help = 'Generate GradeScope output files')
parser.add_option('--mute',
dest = 'muteOutput',
action = 'store_true',
help = 'Mute output from executing tests')
parser.add_option('--print-tests', '-p',
dest = 'printTestCase',
action = 'store_true',
help = 'Print each test case before running them.')
parser.add_option('--test', '-t',
dest = 'runTest',
default = None,
help = 'Run one particular test. Relative to test root.')
parser.add_option('--question', '-q',
dest = 'gradeQuestion',
default = None,
help = 'Grade one particular question.')
parser.add_option('--no-graphics',
dest = 'noGraphics',
action = 'store_true',
help = 'No graphics display for pacman games.')
(options, args) = parser.parse_args(argv)
return options
# confirm we should author solution files
def confirmGenerate():
print('WARNING: this action will overwrite any solution files.')
print('Are you sure you want to proceed? (yes/no)')
while True:
ans = sys.stdin.readline().strip()
if ans == 'yes':
break
elif ans == 'no':
sys.exit(0)
else:
print('please answer either "yes" or "no"')
# TODO: Fix this so that it tracebacks work correctly
# Looking at source of the traceback module, presuming it works
# the same as the intepreters, it uses co_filename. This is,
# however, a readonly attribute.
def setModuleName(module, filename):
functionType = type(confirmGenerate)
classType = type(optparse.Option)
for i in dir(module):
o = getattr(module, i)
if hasattr(o, '__file__'): continue
if type(o) == functionType:
setattr(o, '__file__', filename)
elif type(o) == classType:
setattr(o, '__file__', filename)
# TODO: assign member __file__'s?
#print(i, type(o))
#from cStringIO import StringIO
def loadModuleString(moduleSource):
# Below broken, imp doesn't believe its being passed a file:
# ValueError: load_module arg#2 should be a file or None
#
#f = StringIO(moduleCodeDict[k])
#tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE))
tmp = imp.new_module(k)
exec(moduleCodeDict[k] in tmp.__dict__)
setModuleName(tmp, k)
return tmp
import py_compile
def loadModuleFile(moduleName, filePath):
with open(filePath, 'r') as f:
return imp.load_module(moduleName, f, "%s.py" % moduleName, (".py", "r", imp.PY_SOURCE))
def readFile(path, root=""):
"Read file from disk at specified path and return as string"
with open(os.path.join(root, path), 'r') as handle:
return handle.read()
#######################################################################
# Error Hint Map
#######################################################################
# TODO: use these
ERROR_HINT_MAP = {
'q1': {
"<type 'exceptions.IndexError'>": """
We noticed that your project threw an IndexError on q1.
While many things may cause this, it may have been from
assuming a certain number of successors from a state space
or assuming a certain number of actions available from a given
state. Try making your code more general (no hardcoded indices)
and submit again!
"""
},
'q3': {
"<type 'exceptions.AttributeError'>": """
We noticed that your project threw an AttributeError on q3.
While many things may cause this, it may have been from assuming
a certain size or structure to the state space. For example, if you have
a line of code assuming that the state is (x, y) and we run your code
on a state space with (x, y, z), this error could be thrown. Try
making your code more general and submit again!
"""
}
}
import pprint
def splitStrings(d):
d2 = dict(d)
for k in d:
if k[0:2] == "__":
del d2[k]
continue
if d2[k].find("\n") >= 0:
d2[k] = d2[k].split("\n")
return d2
def printTest(testDict, solutionDict):
pp = pprint.PrettyPrinter(indent=4)
print("Test case:")
for line in testDict["__raw_lines__"]:
print(" |", line)
print("Solution:")
for line in solutionDict["__raw_lines__"]:
print(" |", line)
def runTest(testName, moduleDict, printTestCase=False, display=None):
import testParser
import testClasses
for module in moduleDict:
setattr(sys.modules[__name__], module, moduleDict[module])
testDict = testParser.TestParser(testName + ".test").parse()
solutionDict = testParser.TestParser(testName + ".solution").parse()
test_out_file = os.path.join('%s.test_output' % testName)
testDict['test_out_file'] = test_out_file
testClass = getattr(projectTestClasses, testDict['class'])
questionClass = getattr(testClasses, 'Question')
question = questionClass({'max_points': 0}, display)
testCase = testClass(question, testDict)
if printTestCase:
printTest(testDict, solutionDict)
# This is a fragile hack to create a stub grades object
grades = grading.Grades(projectParams.PROJECT_NAME, [(None,0)])
testCase.execute(grades, moduleDict, solutionDict)
# returns all the tests you need to run in order to run question
def getDepends(testParser, testRoot, question):
allDeps = [question]
questionDict = testParser.TestParser(os.path.join(testRoot, question, 'CONFIG')).parse()
if 'depends' in questionDict:
depends = questionDict['depends'].split()
for d in depends:
# run dependencies first
allDeps = getDepends(testParser, testRoot, d) + allDeps
return allDeps
# get list of questions to grade
def getTestSubdirs(testParser, testRoot, questionToGrade):
problemDict = testParser.TestParser(os.path.join(testRoot, 'CONFIG')).parse()
if questionToGrade != None:
questions = getDepends(testParser, testRoot, questionToGrade)
if len(questions) > 1:
print('Note: due to dependencies, the following tests will be run: %s' % ' '.join(questions))
return questions
if 'order' in problemDict:
return problemDict['order'].split()
return sorted(os.listdir(testRoot))
# evaluate student code
def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP,
edxOutput=False, muteOutput=False, gsOutput=False,
printTestCase=False, questionToGrade=None, display=None):
# imports of testbench code. note that the testClasses import must follow
# the import of student code due to dependencies
import testParser
import testClasses
for module in moduleDict:
setattr(sys.modules[__name__], module, moduleDict[module])
questions = []
questionDicts = {}
test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade)
for q in test_subdirs:
subdir_path = os.path.join(testRoot, q)
if not os.path.isdir(subdir_path) or q[0] == '.':
continue
# create a question object
questionDict = testParser.TestParser(os.path.join(subdir_path, 'CONFIG')).parse()
questionClass = getattr(testClasses, questionDict['class'])
question = questionClass(questionDict, display)
questionDicts[q] = questionDict
# load test cases into question
tests = filter(lambda t: re.match('[^#~.].*\.test\Z', t), os.listdir(subdir_path))
tests = map(lambda t: re.match('(.*)\.test\Z', t).group(1), tests)
for t in sorted(tests):
test_file = os.path.join(subdir_path, '%s.test' % t)
solution_file = os.path.join(subdir_path, '%s.solution' % t)
test_out_file = os.path.join(subdir_path, '%s.test_output' % t)
testDict = testParser.TestParser(test_file).parse()
if testDict.get("disabled", "false").lower() == "true":
continue
testDict['test_out_file'] = test_out_file
testClass = getattr(projectTestClasses, testDict['class'])
testCase = testClass(question, testDict)
def makefun(testCase, solution_file):
if generateSolutions:
# write solution file to disk
return lambda grades: testCase.writeSolution(moduleDict, solution_file)
else:
# read in solution dictionary and pass as an argument
testDict = testParser.TestParser(test_file).parse()
solutionDict = testParser.TestParser(solution_file).parse()
if printTestCase:
return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict)
else:
return lambda grades: testCase.execute(grades, moduleDict, solutionDict)
question.addTestCase(testCase, makefun(testCase, solution_file))
# Note extra function is necessary for scoping reasons
def makefun(question):
return lambda grades: question.execute(grades)
setattr(sys.modules[__name__], q, makefun(question))
questions.append((q, question.getMaxPoints()))
grades = grading.Grades(projectParams.PROJECT_NAME, questions,
gsOutput=gsOutput, edxOutput=edxOutput, muteOutput=muteOutput)
if questionToGrade == None:
for q in questionDicts:
for prereq in questionDicts[q].get('depends', '').split():
grades.addPrereq(q, prereq)
grades.grade(sys.modules[__name__], bonusPic = projectParams.BONUS_PIC)
return grades.points
def getDisplay(graphicsByDefault, options=None):
graphics = graphicsByDefault
if options is not None and options.noGraphics:
graphics = False
if graphics:
try:
import graphicsDisplay
return graphicsDisplay.PacmanGraphics(1, frameTime=.05)
except ImportError:
pass
import textDisplay
return textDisplay.NullGraphics()
if __name__ == '__main__':
options = readCommand(sys.argv)
if options.generateSolutions:
confirmGenerate()
codePaths = options.studentCode.split(',')
# moduleCodeDict = {}
# for cp in codePaths:
# moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
# moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot)
# moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot)
# moduleDict = loadModuleDict(moduleCodeDict)
moduleDict = {}
for cp in codePaths:
moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
moduleDict[moduleName] = loadModuleFile(moduleName, os.path.join(options.codeRoot, cp))
moduleName = re.match('.*?([^/]*)\.py', options.testCaseCode).group(1)
moduleDict['projectTestClasses'] = loadModuleFile(moduleName, os.path.join(options.codeRoot, options.testCaseCode))
if options.runTest != None:
runTest(options.runTest, moduleDict, printTestCase=options.printTestCase, display=getDisplay(True, options))
else:
evaluate(options.generateSolutions, options.testRoot, moduleDict,
gsOutput=options.gsOutput,
edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase,
questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion!=None, options))

View File

@ -0,0 +1,21 @@
python pacman.py
python pacman.py --layout testMaze --pacman GoWestAgent
python pacman.py --layout tinyMaze --pacman GoWestAgent
python pacman.py -h
python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch
python pacman.py -l tinyMaze -p SearchAgent
python pacman.py -l mediumMaze -p SearchAgent
python pacman.py -l bigMaze -z .5 -p SearchAgent
python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs
python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5
python eightpuzzle.py
python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs
python pacman.py -l mediumDottedMaze -p StayEastSearchAgent
python pacman.py -l mediumScaryMaze -p StayWestSearchAgent
python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic
python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5
python pacman.py -l testSearch -p AStarFoodSearchAgent
python pacman.py -l trickySearch -p AStarFoodSearchAgent
python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5

View File

@ -0,0 +1,281 @@
# eightpuzzle.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import search
import random
# Module Classes
class EightPuzzleState:
"""
The Eight Puzzle is described in the course textbook on
page 64.
This class defines the mechanics of the puzzle itself. The
task of recasting this puzzle as a search problem is left to
the EightPuzzleSearchProblem class.
"""
def __init__( self, numbers ):
"""
Constructs a new eight puzzle from an ordering of numbers.
numbers: a list of integers from 0 to 8 representing an
instance of the eight puzzle. 0 represents the blank
space. Thus, the list
[1, 0, 2, 3, 4, 5, 6, 7, 8]
represents the eight puzzle:
-------------
| 1 | | 2 |
-------------
| 3 | 4 | 5 |
-------------
| 6 | 7 | 8 |
------------
The configuration of the puzzle is stored in a 2-dimensional
list (a list of lists) 'cells'.
"""
self.cells = []
numbers = numbers[:] # Make a copy so as not to cause side-effects.
numbers.reverse()
for row in range( 3 ):
self.cells.append( [] )
for col in range( 3 ):
self.cells[row].append( numbers.pop() )
if self.cells[row][col] == 0:
self.blankLocation = row, col
def isGoal( self ):
"""
Checks to see if the puzzle is in its goal state.
-------------
| | 1 | 2 |
-------------
| 3 | 4 | 5 |
-------------
| 6 | 7 | 8 |
-------------
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).isGoal()
True
>>> EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).isGoal()
False
"""
current = 0
for row in range( 3 ):
for col in range( 3 ):
if current != self.cells[row][col]:
return False
current += 1
return True
def legalMoves( self ):
"""
Returns a list of legal moves from the current state.
Moves consist of moving the blank space up, down, left or right.
These are encoded as 'up', 'down', 'left' and 'right' respectively.
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).legalMoves()
['down', 'right']
"""
moves = []
row, col = self.blankLocation
if(row != 0):
moves.append('up')
if(row != 2):
moves.append('down')
if(col != 0):
moves.append('left')
if(col != 2):
moves.append('right')
return moves
def result(self, move):
"""
Returns a new eightPuzzle with the current state and blankLocation
updated based on the provided move.
The move should be a string drawn from a list returned by legalMoves.
Illegal moves will raise an exception, which may be an array bounds
exception.
NOTE: This function *does not* change the current object. Instead,
it returns a new object.
"""
row, col = self.blankLocation
if(move == 'up'):
newrow = row - 1
newcol = col
elif(move == 'down'):
newrow = row + 1
newcol = col
elif(move == 'left'):
newrow = row
newcol = col - 1
elif(move == 'right'):
newrow = row
newcol = col + 1
else:
raise "Illegal Move"
# Create a copy of the current eightPuzzle
newPuzzle = EightPuzzleState([0, 0, 0, 0, 0, 0, 0, 0, 0])
newPuzzle.cells = [values[:] for values in self.cells]
# And update it to reflect the move
newPuzzle.cells[row][col] = self.cells[newrow][newcol]
newPuzzle.cells[newrow][newcol] = self.cells[row][col]
newPuzzle.blankLocation = newrow, newcol
return newPuzzle
# Utilities for comparison and display
def __eq__(self, other):
"""
Overloads '==' such that two eightPuzzles with the same configuration
are equal.
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]) == \
EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).result('left')
True
"""
for row in range( 3 ):
if self.cells[row] != other.cells[row]:
return False
return True
def __hash__(self):
return hash(str(self.cells))
def __getAsciiString(self):
"""
Returns a display string for the maze
"""
lines = []
horizontalLine = ('-' * (13))
lines.append(horizontalLine)
for row in self.cells:
rowLine = '|'
for col in row:
if col == 0:
col = ' '
rowLine = rowLine + ' ' + col.__str__() + ' |'
lines.append(rowLine)
lines.append(horizontalLine)
return '\n'.join(lines)
def __str__(self):
return self.__getAsciiString()
# TODO: Implement The methods in this class
class EightPuzzleSearchProblem(search.SearchProblem):
"""
Implementation of a SearchProblem for the Eight Puzzle domain
Each state is represented by an instance of an eightPuzzle.
"""
def __init__(self,puzzle):
"Creates a new EightPuzzleSearchProblem which stores search information."
self.puzzle = puzzle
def getStartState(self):
return puzzle
def isGoalState(self,state):
return state.isGoal()
def getSuccessors(self,state):
"""
Returns list of (successor, action, stepCost) pairs where
each succesor is either left, right, up, or down
from the original state and the cost is 1.0 for each
"""
succ = []
for a in state.legalMoves():
succ.append((state.result(a), a, 1))
return succ
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
return len(actions)
EIGHT_PUZZLE_DATA = [[1, 0, 2, 3, 4, 5, 6, 7, 8],
[1, 7, 8, 2, 3, 4, 5, 6, 0],
[4, 3, 2, 7, 0, 5, 1, 6, 8],
[5, 1, 3, 4, 0, 2, 6, 7, 8],
[1, 2, 5, 7, 6, 8, 0, 4, 3],
[0, 3, 1, 6, 8, 2, 7, 5, 4]]
def loadEightPuzzle(puzzleNumber):
"""
puzzleNumber: The number of the eight puzzle to load.
Returns an eight puzzle object generated from one of the
provided puzzles in EIGHT_PUZZLE_DATA.
puzzleNumber can range from 0 to 5.
>>> print(loadEightPuzzle(0))
-------------
| 1 | | 2 |
-------------
| 3 | 4 | 5 |
-------------
| 6 | 7 | 8 |
-------------
"""
return EightPuzzleState(EIGHT_PUZZLE_DATA[puzzleNumber])
def createRandomEightPuzzle(moves=100):
"""
moves: number of random moves to apply
Creates a random eight puzzle by applying
a series of 'moves' random moves to a solved
puzzle.
"""
puzzle = EightPuzzleState([0,1,2,3,4,5,6,7,8])
for i in range(moves):
# Execute a random legal move
puzzle = puzzle.result(random.sample(puzzle.legalMoves(), 1)[0])
return puzzle
if __name__ == '__main__':
puzzle = createRandomEightPuzzle(25)
print('A random puzzle:')
print(puzzle)
problem = EightPuzzleSearchProblem(puzzle)
path = search.breadthFirstSearch(problem)
print('BFS found a path of %d moves: %s' % (len(path), str(path)))
curr = puzzle
i = 1
for a in path:
curr = curr.result(a)
print('After %d move%s: %s' % (i, ("", "s")[i>1], a))
print(curr)
input("Press return for the next state...") # wait for key stroke
i += 1

View File

@ -0,0 +1,729 @@
# game.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# game.py
# -------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
from util import *
import time, os
import traceback
import sys
#######################
# Parts worth reading #
#######################
class Agent:
"""
An agent must define a getAction method, but may also define the
following methods which will be called if they exist:
def registerInitialState(self, state): # inspects the starting state
"""
def __init__(self, index=0):
self.index = index
def getAction(self, state):
"""
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
must return an action from Directions.{North, South, East, West, Stop}
"""
raiseNotDefined()
class Directions:
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
STOP = 'Stop'
LEFT = {NORTH: WEST,
SOUTH: EAST,
EAST: NORTH,
WEST: SOUTH,
STOP: STOP}
RIGHT = dict([(y,x) for x, y in LEFT.items()])
REVERSE = {NORTH: SOUTH,
SOUTH: NORTH,
EAST: WEST,
WEST: EAST,
STOP: STOP}
class Configuration:
"""
A Configuration holds the (x,y) coordinate of a character, along with its
traveling direction.
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
"""
def __init__(self, pos, direction):
self.pos = pos
self.direction = direction
def getPosition(self):
return (self.pos)
def getDirection(self):
return self.direction
def isInteger(self):
x,y = self.pos
return x == int(x) and y == int(y)
def __eq__(self, other):
if other == None: return False
return (self.pos == other.pos and self.direction == other.direction)
def __hash__(self):
x = hash(self.pos)
y = hash(self.direction)
return hash(x + 13 * y)
def __str__(self):
return "(x,y)="+str(self.pos)+", "+str(self.direction)
def generateSuccessor(self, vector):
"""
Generates a new configuration reached by translating the current
configuration by the action vector. This is a low-level call and does
not attempt to respect the legality of the movement.
Actions are movement vectors.
"""
x, y= self.pos
dx, dy = vector
direction = Actions.vectorToDirection(vector)
if direction == Directions.STOP:
direction = self.direction # There is no stop direction
return Configuration((x + dx, y+dy), direction)
class AgentState:
"""
AgentStates hold the state of an agent (configuration, speed, scared, etc).
"""
def __init__( self, startConfiguration, isPacman ):
self.start = startConfiguration
self.configuration = startConfiguration
self.isPacman = isPacman
self.scaredTimer = 0
self.numCarrying = 0
self.numReturned = 0
def __str__( self ):
if self.isPacman:
return "Pacman: " + str( self.configuration )
else:
return "Ghost: " + str( self.configuration )
def __eq__( self, other ):
if other == None:
return False
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
def __hash__(self):
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
def copy( self ):
state = AgentState( self.start, self.isPacman )
state.configuration = self.configuration
state.scaredTimer = self.scaredTimer
state.numCarrying = self.numCarrying
state.numReturned = self.numReturned
return state
def getPosition(self):
if self.configuration == None: return None
return self.configuration.getPosition()
def getDirection(self):
return self.configuration.getDirection()
class Grid:
"""
A 2-dimensional array of objects backed by a list of lists. Data is accessed
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
y vertical and the origin (0,0) in the bottom left corner.
The __str__ method constructs an output that is oriented like a pacman board.
"""
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
if initialValue not in [False, True]: raise Exception('Grids can only contain booleans')
self.CELLS_PER_INT = 30
self.width = width
self.height = height
self.data = [[initialValue for y in range(height)] for x in range(width)]
if bitRepresentation:
self._unpackBits(bitRepresentation)
def __getitem__(self, i):
return self.data[i]
def __setitem__(self, key, item):
self.data[key] = item
def __str__(self):
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
out.reverse()
return '\n'.join([''.join(x) for x in out])
def __eq__(self, other):
if other == None: return False
return self.data == other.data
def __hash__(self):
# return hash(str(self))
base = 1
h = 0
for l in self.data:
for i in l:
if i:
h += base
base *= 2
return hash(h)
def copy(self):
g = Grid(self.width, self.height)
g.data = [x[:] for x in self.data]
return g
def deepCopy(self):
return self.copy()
def shallowCopy(self):
g = Grid(self.width, self.height)
g.data = self.data
return g
def count(self, item =True ):
return sum([x.count(item) for x in self.data])
def asList(self, key = True):
list = []
for x in range(self.width):
for y in range(self.height):
if self[x][y] == key: list.append( (x,y) )
return list
def packBits(self):
"""
Returns an efficient int list representation
(width, height, bitPackedInts...)
"""
bits = [self.width, self.height]
currentInt = 0
for i in range(self.height * self.width):
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
x, y = self._cellIndexToPosition(i)
if self[x][y]:
currentInt += 2 ** bit
if (i + 1) % self.CELLS_PER_INT == 0:
bits.append(currentInt)
currentInt = 0
bits.append(currentInt)
return tuple(bits)
def _cellIndexToPosition(self, index):
x = index // self.height
y = index % self.height
return x, y
def _unpackBits(self, bits):
"""
Fills in data from a bit-level representation
"""
cell = 0
for packed in bits:
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
if cell == self.width * self.height: break
x, y = self._cellIndexToPosition(cell)
self[x][y] = bit
cell += 1
def _unpackInt(self, packed, size):
bools = []
if packed < 0: raise ValueError("must be a positive integer")
for i in range(size):
n = 2 ** (self.CELLS_PER_INT - i - 1)
if packed >= n:
bools.append(True)
packed -= n
else:
bools.append(False)
return bools
def reconstituteGrid(bitRep):
if type(bitRep) is not type((1,2)):
return bitRep
width, height = bitRep[:2]
return Grid(width, height, bitRepresentation= bitRep[2:])
####################################
# Parts you shouldn't have to read #
####################################
class Actions:
"""
A collection of static methods for manipulating move actions.
"""
# Directions
_directions = {Directions.NORTH: (0, 1),
Directions.SOUTH: (0, -1),
Directions.EAST: (1, 0),
Directions.WEST: (-1, 0),
Directions.STOP: (0, 0)}
_directionsAsList = _directions.items()
TOLERANCE = .001
def reverseDirection(action):
if action == Directions.NORTH:
return Directions.SOUTH
if action == Directions.SOUTH:
return Directions.NORTH
if action == Directions.EAST:
return Directions.WEST
if action == Directions.WEST:
return Directions.EAST
return action
reverseDirection = staticmethod(reverseDirection)
def vectorToDirection(vector):
dx, dy = vector
if dy > 0:
return Directions.NORTH
if dy < 0:
return Directions.SOUTH
if dx < 0:
return Directions.WEST
if dx > 0:
return Directions.EAST
return Directions.STOP
vectorToDirection = staticmethod(vectorToDirection)
def directionToVector(direction, speed = 1.0):
dx, dy = Actions._directions[direction]
return (dx * speed, dy * speed)
directionToVector = staticmethod(directionToVector)
def getPossibleActions(config, walls):
possible = []
x, y = config.pos
x_int, y_int = int(x + 0.5), int(y + 0.5)
# In between grid points, all agents must continue straight
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
return [config.getDirection()]
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_y = y_int + dy
next_x = x_int + dx
if not walls[next_x][next_y]: possible.append(dir)
return possible
getPossibleActions = staticmethod(getPossibleActions)
def getLegalNeighbors(position, walls):
x,y = position
x_int, y_int = int(x + 0.5), int(y + 0.5)
neighbors = []
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_x = x_int + dx
if next_x < 0 or next_x == walls.width: continue
next_y = y_int + dy
if next_y < 0 or next_y == walls.height: continue
if not walls[next_x][next_y]: neighbors.append((next_x, next_y))
return neighbors
getLegalNeighbors = staticmethod(getLegalNeighbors)
def getSuccessor(position, action):
dx, dy = Actions.directionToVector(action)
x, y = position
return (x + dx, y + dy)
getSuccessor = staticmethod(getSuccessor)
class GameStateData:
"""
"""
def __init__( self, prevState = None ):
"""
Generates a new data packet by copying information from its predecessor.
"""
if prevState != None:
self.food = prevState.food.shallowCopy()
self.capsules = prevState.capsules[:]
self.agentStates = self.copyAgentStates( prevState.agentStates )
self.layout = prevState.layout
self._eaten = prevState._eaten
self.score = prevState.score
self._foodEaten = None
self._foodAdded = None
self._capsuleEaten = None
self._agentMoved = None
self._lose = False
self._win = False
self.scoreChange = 0
def deepCopy( self ):
state = GameStateData( self )
state.food = self.food.deepCopy()
state.layout = self.layout.deepCopy()
state._agentMoved = self._agentMoved
state._foodEaten = self._foodEaten
state._foodAdded = self._foodAdded
state._capsuleEaten = self._capsuleEaten
return state
def copyAgentStates( self, agentStates ):
copiedStates = []
for agentState in agentStates:
copiedStates.append( agentState.copy() )
return copiedStates
def __eq__( self, other ):
"""
Allows two states to be compared.
"""
if other == None: return False
# TODO Check for type of other
if not self.agentStates == other.agentStates: return False
if not self.food == other.food: return False
if not self.capsules == other.capsules: return False
if not self.score == other.score: return False
return True
def __hash__( self ):
"""
Allows states to be keys of dictionaries.
"""
for i, state in enumerate( self.agentStates ):
try:
int(hash(state))
except TypeError as e:
print(e)
#hash(state)
return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 )
def __str__( self ):
width, height = self.layout.width, self.layout.height
map = Grid(width, height)
if type(self.food) == type((1,2)):
self.food = reconstituteGrid(self.food)
for x in range(width):
for y in range(height):
food, walls = self.food, self.layout.walls
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
for agentState in self.agentStates:
if agentState == None: continue
if agentState.configuration == None: continue
x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )]
agent_dir = agentState.configuration.direction
if agentState.isPacman:
map[x][y] = self._pacStr( agent_dir )
else:
map[x][y] = self._ghostStr( agent_dir )
for x, y in self.capsules:
map[x][y] = 'o'
return str(map) + ("\nScore: %d\n" % self.score)
def _foodWallStr( self, hasFood, hasWall ):
if hasFood:
return '.'
elif hasWall:
return '%'
else:
return ' '
def _pacStr( self, dir ):
if dir == Directions.NORTH:
return 'v'
if dir == Directions.SOUTH:
return '^'
if dir == Directions.WEST:
return '>'
return '<'
def _ghostStr( self, dir ):
return 'G'
if dir == Directions.NORTH:
return 'M'
if dir == Directions.SOUTH:
return 'W'
if dir == Directions.WEST:
return '3'
return 'E'
def initialize( self, layout, numGhostAgents ):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.food = layout.food.copy()
#self.capsules = []
self.capsules = layout.capsules[:]
self.layout = layout
self.score = 0
self.scoreChange = 0
self.agentStates = []
numGhosts = 0
for isPacman, pos in layout.agentPositions:
if not isPacman:
if numGhosts == numGhostAgents: continue # Max ghosts reached already
else: numGhosts += 1
self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) )
self._eaten = [False for a in self.agentStates]
try:
import boinc
_BOINC_ENABLED = True
except:
_BOINC_ENABLED = False
class Game:
"""
The Game manages the control flow, soliciting actions from agents.
"""
def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ):
self.agentCrashed = False
self.agents = agents
self.display = display
self.rules = rules
self.startingIndex = startingIndex
self.gameOver = False
self.muteAgents = muteAgents
self.catchExceptions = catchExceptions
self.moveHistory = []
self.totalAgentTimes = [0 for agent in agents]
self.totalAgentTimeWarnings = [0 for agent in agents]
self.agentTimeout = False
import io
self.agentOutput = [io.StringIO() for agent in agents]
def getProgress(self):
if self.gameOver:
return 1.0
else:
return self.rules.getProgress(self)
def _agentCrash( self, agentIndex, quiet=False):
"Helper method for handling agent crashes"
if not quiet: traceback.print_exc()
self.gameOver = True
self.agentCrashed = True
self.rules.agentCrash(self, agentIndex)
OLD_STDOUT = None
OLD_STDERR = None
def mute(self, agentIndex):
if not self.muteAgents: return
global OLD_STDOUT, OLD_STDERR
import io
OLD_STDOUT = sys.stdout
OLD_STDERR = sys.stderr
sys.stdout = self.agentOutput[agentIndex]
sys.stderr = self.agentOutput[agentIndex]
def unmute(self):
if not self.muteAgents: return
global OLD_STDOUT, OLD_STDERR
# Revert stdout/stderr to originals
sys.stdout = OLD_STDOUT
sys.stderr = OLD_STDERR
def run( self ):
"""
Main control loop for game play.
"""
self.display.initialize(self.state.data)
self.numMoves = 0
###self.display.initialize(self.state.makeObservation(1).data)
# inform learning agents of the game start
for i in range(len(self.agents)):
agent = self.agents[i]
if not agent:
self.mute(i)
# this is a null agent, meaning it failed to load
# the other team wins
print("Agent %d failed to load" % i, file=sys.stderr)
self.unmute()
self._agentCrash(i, quiet=True)
return
if ("registerInitialState" in dir(agent)):
self.mute(i)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
try:
start_time = time.time()
timed_func(self.state.deepCopy())
time_taken = time.time() - start_time
self.totalAgentTimes[i] += time_taken
except TimeoutFunctionException:
print("Agent %d ran out of time on startup!" % i, file=sys.stderr)
self.unmute()
self.agentTimeout = True
self._agentCrash(i, quiet=True)
return
except Exception as data:
self._agentCrash(i, quiet=False)
self.unmute()
return
else:
agent.registerInitialState(self.state.deepCopy())
## TODO: could this exceed the total time
self.unmute()
agentIndex = self.startingIndex
numAgents = len( self.agents )
while not self.gameOver:
# Fetch the next agent
agent = self.agents[agentIndex]
move_time = 0
skip_action = False
# Generate an observation of the state
if 'observationFunction' in dir( agent ):
self.mute(agentIndex)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
try:
start_time = time.time()
observation = timed_func(self.state.deepCopy())
except TimeoutFunctionException:
skip_action = True
move_time += time.time() - start_time
self.unmute()
except Exception as data:
self._agentCrash(agentIndex, quiet=False)
self.unmute()
return
else:
observation = agent.observationFunction(self.state.deepCopy())
self.unmute()
else:
observation = self.state.deepCopy()
# Solicit an action
action = None
self.mute(agentIndex)
if self.catchExceptions:
try:
timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
try:
start_time = time.time()
if skip_action:
raise TimeoutFunctionException()
action = timed_func( observation )
except TimeoutFunctionException:
print("Agent %d timed out on a single move!" % agentIndex, file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
move_time += time.time() - start_time
if move_time > self.rules.getMoveWarningTime(agentIndex):
self.totalAgentTimeWarnings[agentIndex] += 1
print("Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
print("Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.totalAgentTimes[agentIndex] += move_time
#print("Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex]))
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
print("Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex]), file=sys.stderr)
self.agentTimeout = True
self._agentCrash(agentIndex, quiet=True)
self.unmute()
return
self.unmute()
except Exception as data:
self._agentCrash(agentIndex)
self.unmute()
return
else:
action = agent.getAction(observation)
self.unmute()
# Execute the action
self.moveHistory.append( (agentIndex, action) )
if self.catchExceptions:
try:
self.state = self.state.generateSuccessor( agentIndex, action )
except Exception as data:
self.mute(agentIndex)
self._agentCrash(agentIndex)
self.unmute()
return
else:
self.state = self.state.generateSuccessor( agentIndex, action )
# Change the display
self.display.update( self.state.data )
###idx = agentIndex - agentIndex % 2 + 1
###self.display.update( self.state.makeObservation(idx).data )
# Allow for game specific conditions (winning, losing, etc.)
self.rules.process(self.state, self)
# Track progress
if agentIndex == numAgents + 1: self.numMoves += 1
# Next agent
agentIndex = ( agentIndex + 1 ) % numAgents
if _BOINC_ENABLED:
boinc.set_fraction_done(self.getProgress())
# inform a learning agent of the game result
for agentIndex, agent in enumerate(self.agents):
if "final" in dir( agent ) :
try:
self.mute(agentIndex)
agent.final( self.state )
self.unmute()
except Exception as data:
if not self.catchExceptions: raise data
self._agentCrash(agentIndex)
self.unmute()
return
self.display.finish()

View File

@ -0,0 +1,81 @@
# ghostAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from game import Agent
from game import Actions
from game import Directions
import random
from util import manhattanDistance
import util
class GhostAgent( Agent ):
def __init__( self, index ):
self.index = index
def getAction( self, state ):
dist = self.getDistribution(state)
if len(dist) == 0:
return Directions.STOP
else:
return util.chooseFromDistribution( dist )
def getDistribution(self, state):
"Returns a Counter encoding a distribution over actions from the provided state."
util.raiseNotDefined()
class RandomGhost( GhostAgent ):
"A ghost that chooses a legal action uniformly at random."
def getDistribution( self, state ):
dist = util.Counter()
for a in state.getLegalActions( self.index ): dist[a] = 1.0
dist.normalize()
return dist
class DirectionalGhost( GhostAgent ):
"A ghost that prefers to rush Pacman, or flee when scared."
def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ):
self.index = index
self.prob_attack = prob_attack
self.prob_scaredFlee = prob_scaredFlee
def getDistribution( self, state ):
# Read variables from state
ghostState = state.getGhostState( self.index )
legalActions = state.getLegalActions( self.index )
pos = state.getGhostPosition( self.index )
isScared = ghostState.scaredTimer > 0
speed = 1
if isScared: speed = 0.5
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
pacmanPosition = state.getPacmanPosition()
# Select best actions given the state
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
if isScared:
bestScore = max( distancesToPacman )
bestProb = self.prob_scaredFlee
else:
bestScore = min( distancesToPacman )
bestProb = self.prob_attack
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
# Construct distribution
dist = util.Counter()
for a in bestActions: dist[a] = bestProb / len(bestActions)
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
dist.normalize()
return dist

View File

@ -0,0 +1,323 @@
# grading.py
# ----------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"Common code for autograders"
import cgi
import time
import sys
import json
import traceback
import pdb
from collections import defaultdict
import util
class Grades:
"A data structure for project grades, along with formatting code to display them"
def __init__(self, projectName, questionsAndMaxesList,
gsOutput=False, edxOutput=False, muteOutput=False):
"""
Defines the grading scheme for a project
projectName: project name
questionsAndMaxesDict: a list of (question name, max points per question)
"""
self.questions = [el[0] for el in questionsAndMaxesList]
self.maxes = dict(questionsAndMaxesList)
self.points = Counter()
self.messages = dict([(q, []) for q in self.questions])
self.project = projectName
self.start = time.localtime()[1:6]
self.sane = True # Sanity checks
self.currentQuestion = None # Which question we're grading
self.edxOutput = edxOutput
self.gsOutput = gsOutput # GradeScope output
self.mute = muteOutput
self.prereqs = defaultdict(set)
#print('Autograder transcript for %s' % self.project)
print('Starting on %d-%d at %d:%02d:%02d' % self.start)
def addPrereq(self, question, prereq):
self.prereqs[question].add(prereq)
def grade(self, gradingModule, exceptionMap = {}, bonusPic = False):
"""
Grades each question
gradingModule: the module with all the grading functions (pass in with sys.modules[__name__])
"""
completedQuestions = set([])
for q in self.questions:
print('\nQuestion %s' % q)
print('=' * (9 + len(q)))
print
self.currentQuestion = q
incompleted = self.prereqs[q].difference(completedQuestions)
if len(incompleted) > 0:
prereq = incompleted.pop()
print(
"""*** NOTE: Make sure to complete Question %s before working on Question %s,
*** because Question %s builds upon your answer for Question %s.
""" % (prereq, q, q, prereq))
continue
if self.mute: util.mutePrint()
try:
util.TimeoutFunction(getattr(gradingModule, q),1800)(self) # Call the question's function
#TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function
except Exception as inst:
self.addExceptionMessage(q, inst, traceback)
self.addErrorHints(exceptionMap, inst, q[1])
except:
self.fail('FAIL: Terminated with a string exception.')
finally:
if self.mute: util.unmutePrint()
if self.points[q] >= self.maxes[q]:
completedQuestions.add(q)
print('\n### Question %s: %d/%d ###\n' % (q, self.points[q], self.maxes[q]))
print('\nFinished at %d:%02d:%02d' % time.localtime()[3:6])
print("\nProvisional grades\n==================")
for q in self.questions:
print('Question %s: %d/%d' % (q, self.points[q], self.maxes[q]))
print('------------------')
print('Total: %d/%d' % (self.points.totalCount(), sum(self.maxes.values())))
if bonusPic and self.points.totalCount() == 25:
print("""
ALL HAIL GRANDPAC.
LONG LIVE THE GHOSTBUSTING KING.
--- ---- ---
| \ / + \ / |
| + \--/ \--/ + |
| + + |
| + + + |
@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@
V @@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@
/\ @@@@@@@@@@@@@@@@@@@@@@
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@
/\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
""")
print("""
Your grades are NOT yet registered. To register your grades, make sure
to follow your instructor's guidelines to receive credit on your project.
""")
if self.edxOutput:
self.produceOutput()
if self.gsOutput:
self.produceGradeScopeOutput()
def addExceptionMessage(self, q, inst, traceback):
"""
Method to format the exception message, this is more complicated because
we need to cgi.escape the traceback but wrap the exception in a <pre> tag
"""
self.fail('FAIL: Exception raised: %s' % inst)
self.addMessage('')
for line in traceback.format_exc().split('\n'):
self.addMessage(line)
def addErrorHints(self, exceptionMap, errorInstance, questionNum):
typeOf = str(type(errorInstance))
questionName = 'q' + questionNum
errorHint = ''
# question specific error hints
if exceptionMap.get(questionName):
questionMap = exceptionMap.get(questionName)
if (questionMap.get(typeOf)):
errorHint = questionMap.get(typeOf)
# fall back to general error messages if a question specific
# one does not exist
if (exceptionMap.get(typeOf)):
errorHint = exceptionMap.get(typeOf)
# dont include the HTML if we have no error hint
if not errorHint:
return ''
for line in errorHint.split('\n'):
self.addMessage(line)
def produceGradeScopeOutput(self):
out_dct = {}
# total of entire submission
total_possible = sum(self.maxes.values())
total_score = sum(self.points.values())
out_dct['score'] = total_score
out_dct['max_score'] = total_possible
out_dct['output'] = "Total score (%d / %d)" % (total_score, total_possible)
# individual tests
tests_out = []
for name in self.questions:
test_out = {}
# test name
test_out['name'] = name
# test score
test_out['score'] = self.points[name]
test_out['max_score'] = self.maxes[name]
# others
is_correct = self.points[name] >= self.maxes[name]
test_out['output'] = " Question {num} ({points}/{max}) {correct}".format(
num=(name[1] if len(name) == 2 else name),
points=test_out['score'],
max=test_out['max_score'],
correct=('X' if not is_correct else ''),
)
test_out['tags'] = []
tests_out.append(test_out)
out_dct['tests'] = tests_out
# file output
with open('gradescope_response.json', 'w') as outfile:
json.dump(out_dct, outfile)
return
def produceOutput(self):
edxOutput = open('edx_response.html', 'w')
edxOutput.write("<div>")
# first sum
total_possible = sum(self.maxes.values())
total_score = sum(self.points.values())
checkOrX = '<span class="incorrect"/>'
if (total_score >= total_possible):
checkOrX = '<span class="correct"/>'
header = """
<h3>
Total score ({total_score} / {total_possible})
</h3>
""".format(total_score = total_score,
total_possible = total_possible,
checkOrX = checkOrX
)
edxOutput.write(header)
for q in self.questions:
if len(q) == 2:
name = q[1]
else:
name = q
checkOrX = '<span class="incorrect"/>'
if (self.points[q] >= self.maxes[q]):
checkOrX = '<span class="correct"/>'
#messages = '\n<br/>\n'.join(self.messages[q])
messages = "<pre>%s</pre>" % '\n'.join(self.messages[q])
output = """
<div class="test">
<section>
<div class="shortform">
Question {q} ({points}/{max}) {checkOrX}
</div>
<div class="longform">
{messages}
</div>
</section>
</div>
""".format(q = name,
max = self.maxes[q],
messages = messages,
checkOrX = checkOrX,
points = self.points[q]
)
# print("*** output for Question %s " % q[1])
# print(output)
edxOutput.write(output)
edxOutput.write("</div>")
edxOutput.close()
edxOutput = open('edx_grade', 'w')
edxOutput.write(str(self.points.totalCount()))
edxOutput.close()
def fail(self, message, raw=False):
"Sets sanity check bit to false and outputs a message"
self.sane = False
self.assignZeroCredit()
self.addMessage(message, raw)
def assignZeroCredit(self):
self.points[self.currentQuestion] = 0
def addPoints(self, amt):
self.points[self.currentQuestion] += amt
def deductPoints(self, amt):
self.points[self.currentQuestion] -= amt
def assignFullCredit(self, message="", raw=False):
self.points[self.currentQuestion] = self.maxes[self.currentQuestion]
if message != "":
self.addMessage(message, raw)
def addMessage(self, message, raw=False):
if not raw:
# We assume raw messages, formatted for HTML, are printed separately
if self.mute: util.unmutePrint()
print('*** ' + message)
if self.mute: util.mutePrint()
message = cgi.escape(message)
self.messages[self.currentQuestion].append(message)
def addMessageToEmail(self, message):
print("WARNING**** addMessageToEmail is deprecated %s" % message)
for line in message.split('\n'):
pass
#print('%%% ' + line + ' %%%')
#self.messages[self.currentQuestion].append(line)
class Counter(dict):
"""
Dict with default 0
"""
def __getitem__(self, idx):
try:
return dict.__getitem__(self, idx)
except KeyError:
return 0
def totalCount(self):
"""
Returns the sum of counts for all keys.
"""
return sum(self.values())

View File

@ -0,0 +1,679 @@
# graphicsDisplay.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from graphicsUtils import *
import math, time
from game import Directions
###########################
# GRAPHICS DISPLAY CODE #
###########################
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
DEFAULT_GRID_SIZE = 30.0
INFO_PANE_HEIGHT = 35
BACKGROUND_COLOR = formatColor(0,0,0)
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
INFO_PANE_COLOR = formatColor(.4,.4,0)
SCORE_COLOR = formatColor(.9, .9, .9)
PACMAN_OUTLINE_WIDTH = 2
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
GHOST_COLORS = []
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple
TEAM_COLORS = GHOST_COLORS[:2]
GHOST_SHAPE = [
( 0, 0.3 ),
( 0.25, 0.75 ),
( 0.5, 0.3 ),
( 0.75, 0.75 ),
( 0.75, -0.5 ),
( 0.5, -0.75 ),
(-0.5, -0.75 ),
(-0.75, -0.5 ),
(-0.75, 0.75 ),
(-0.5, 0.3 ),
(-0.25, 0.75 )
]
GHOST_SIZE = 0.65
SCARED_COLOR = formatColor(1,1,1)
GHOST_VEC_COLORS = [colorToVector(c) for c in GHOST_COLORS]
PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
PACMAN_SCALE = 0.5
#pacman_speed = 0.25
# Food
FOOD_COLOR = formatColor(1,1,1)
FOOD_SIZE = 0.1
# Laser
LASER_COLOR = formatColor(1,0,0)
LASER_SIZE = 0.02
# Capsule graphics
CAPSULE_COLOR = formatColor(1,1,1)
CAPSULE_SIZE = 0.25
# Drawing walls
WALL_RADIUS = 0.15
class InfoPane:
def __init__(self, layout, gridSize):
self.gridSize = gridSize
self.width = (layout.width) * gridSize
self.base = (layout.height + 1) * gridSize
self.height = INFO_PANE_HEIGHT
self.fontSize = 24
self.textColor = PACMAN_COLOR
self.drawPane()
def toScreen(self, pos, y = None):
"""
Translates a point relative from the bottom left of the info pane.
"""
if y == None:
x,y = pos
else:
x = pos
x = self.gridSize + x # Margin
y = self.base + y
return x,y
def drawPane(self):
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
def initializeGhostDistances(self, distances):
self.ghostDistanceText = []
size = 20
if self.width < 240:
size = 12
if self.width < 160:
size = 10
for i, d in enumerate(distances):
t = text( self.toScreen(self.width//2 + self.width//8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
self.ghostDistanceText.append(t)
def updateScore(self, score):
changeText(self.scoreText, "SCORE: % 4d" % score)
def setTeam(self, isBlue):
text = "RED TEAM"
if isBlue: text = "BLUE TEAM"
self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold")
def updateGhostDistances(self, distances):
if len(distances) == 0: return
if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances)
else:
for i, d in enumerate(distances):
changeText(self.ghostDistanceText[i], d)
def drawGhost(self):
pass
def drawPacman(self):
pass
def drawWarning(self):
pass
def clearIcon(self):
pass
def updateMessage(self, message):
pass
def clearMessage(self):
pass
class PacmanGraphics:
def __init__(self, zoom=1.0, frameTime=0.0, capture=False):
self.have_window = 0
self.currentGhostImages = {}
self.pacmanImage = None
self.zoom = zoom
self.gridSize = DEFAULT_GRID_SIZE * zoom
self.capture = capture
self.frameTime = frameTime
def checkNullDisplay(self):
return False
def initialize(self, state, isBlue = False):
self.isBlue = isBlue
self.startGraphics(state)
# self.drawDistributions(state)
self.distributionImages = None # Initialized lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def startGraphics(self, state):
self.layout = state.layout
layout = self.layout
self.width = layout.width
self.height = layout.height
self.make_window(self.width, self.height)
self.infoPane = InfoPane(layout, self.gridSize)
self.currentState = layout
def drawDistributions(self, state):
walls = state.layout.walls
dist = []
for x in range(walls.width):
distx = []
dist.append(distx)
for y in range(walls.height):
( screen_x, screen_y ) = self.to_screen( (x, y) )
block = square( (screen_x, screen_y),
0.5 * self.gridSize,
color = BACKGROUND_COLOR,
filled = 1, behind=2)
distx.append(block)
self.distributionImages = dist
def drawStaticObjects(self, state):
layout = self.layout
self.drawWalls(layout.walls)
self.food = self.drawFood(layout.food)
self.capsules = self.drawCapsules(layout.capsules)
refresh()
def drawAgentObjects(self, state):
self.agentImages = [] # (agentState, image)
for index, agent in enumerate(state.agentStates):
if agent.isPacman:
image = self.drawPacman(agent, index)
self.agentImages.append( (agent, image) )
else:
image = self.drawGhost(agent, index)
self.agentImages.append( (agent, image) )
refresh()
def swapImages(self, agentIndex, newState):
"""
Changes an image from a ghost to a pacman or vis versa (for capture)
"""
prevState, prevImage = self.agentImages[agentIndex]
for item in prevImage: remove_from_screen(item)
if newState.isPacman:
image = self.drawPacman(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image )
else:
image = self.drawGhost(newState, agentIndex)
self.agentImages[agentIndex] = (newState, image )
refresh()
def update(self, newState):
agentIndex = newState._agentMoved
agentState = newState.agentStates[agentIndex]
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState)
prevState, prevImage = self.agentImages[agentIndex]
if agentState.isPacman:
self.animatePacman(agentState, prevState, prevImage)
else:
self.moveGhost(agentState, agentIndex, prevState, prevImage)
self.agentImages[agentIndex] = (agentState, prevImage)
if newState._foodEaten != None:
self.removeFood(newState._foodEaten, self.food)
if newState._capsuleEaten != None:
self.removeCapsule(newState._capsuleEaten, self.capsules)
self.infoPane.updateScore(newState.score)
if 'ghostDistances' in dir(newState):
self.infoPane.updateGhostDistances(newState.ghostDistances)
def make_window(self, width, height):
grid_width = (width-1) * self.gridSize
grid_height = (height-1) * self.gridSize
screen_width = 2*self.gridSize + grid_width
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
begin_graphics(screen_width,
screen_height,
BACKGROUND_COLOR,
"CS188 Pacman")
def drawPacman(self, pacman, index):
position = self.getPosition(pacman)
screen_point = self.to_screen(position)
endpoints = self.getEndpoints(self.getDirection(pacman))
width = PACMAN_OUTLINE_WIDTH
outlineColor = PACMAN_COLOR
fillColor = PACMAN_COLOR
if self.capture:
outlineColor = TEAM_COLORS[index % 2]
fillColor = GHOST_COLORS[index]
width = PACMAN_CAPTURE_OUTLINE_WIDTH
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
fillColor = fillColor, outlineColor = outlineColor,
endpoints = endpoints,
width = width)]
def getEndpoints(self, direction, position=(0,0)):
x, y = position
pos = x - int(x) + y - int(y)
width = 30 + 80 * math.sin(math.pi* pos)
delta = width / 2
if (direction == 'West'):
endpoints = (180+delta, 180-delta)
elif (direction == 'North'):
endpoints = (90+delta, 90-delta)
elif (direction == 'South'):
endpoints = (270+delta, 270-delta)
else:
endpoints = (0+delta, 0-delta)
return endpoints
def movePacman(self, position, direction, image):
screenPosition = self.to_screen(position)
endpoints = self.getEndpoints( direction, position )
r = PACMAN_SCALE * self.gridSize
moveCircle(image[0], screenPosition, r, endpoints)
refresh()
def animatePacman(self, pacman, prevPacman, image):
if self.frameTime < 0:
print('Press any key to step forward, "q" to play')
keys = wait_for_keys()
if 'q' in keys:
self.frameTime = 0.1
if self.frameTime > 0.01 or self.frameTime < 0:
start = time.time()
fx, fy = self.getPosition(prevPacman)
px, py = self.getPosition(pacman)
frames = 4.0
for i in range(1,int(frames) + 1):
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
self.movePacman(pos, self.getDirection(pacman), image)
refresh()
sleep(abs(self.frameTime) / frames)
else:
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
refresh()
def getGhostColor(self, ghost, ghostIndex):
if ghost.scaredTimer > 0:
return SCARED_COLOR
else:
return GHOST_COLORS[ghostIndex]
def drawGhost(self, ghost, agentIndex):
pos = self.getPosition(ghost)
dir = self.getDirection(ghost)
(screen_x, screen_y) = (self.to_screen(pos) )
coords = []
for (x, y) in GHOST_SHAPE:
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))
colour = self.getGhostColor(ghost, agentIndex)
body = polygon(coords, colour, filled = 1)
WHITE = formatColor(1.0, 1.0, 1.0)
BLACK = formatColor(0.0, 0.0, 0.0)
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
ghostImageParts = []
ghostImageParts.append(body)
ghostImageParts.append(leftEye)
ghostImageParts.append(rightEye)
ghostImageParts.append(leftPupil)
ghostImageParts.append(rightPupil)
return ghostImageParts
def moveEyes(self, pos, dir, eyes):
(screen_x, screen_y) = (self.to_screen(pos) )
dx = 0
dy = 0
if dir == 'North':
dy = -0.2
if dir == 'South':
dy = 0.2
if dir == 'East':
dx = 0.2
if dir == 'West':
dx = -0.2
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
new_x, new_y = self.to_screen(self.getPosition(ghost))
delta = new_x - old_x, new_y - old_y
for ghostImagePart in ghostImageParts:
move_by(ghostImagePart, delta)
refresh()
if ghost.scaredTimer > 0:
color = SCARED_COLOR
else:
color = GHOST_COLORS[ghostIndex]
edit(ghostImageParts[0], ('fill', color), ('outline', color))
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
refresh()
def getPosition(self, agentState):
if agentState.configuration == None: return (-1000, -1000)
return agentState.getPosition()
def getDirection(self, agentState):
if agentState.configuration == None: return Directions.STOP
return agentState.configuration.getDirection()
def finish(self):
end_graphics()
def to_screen(self, point):
( x, y ) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return ( x, y )
# Fixes some TK issue with off-center circles
def to_screen2(self, point):
( x, y ) = point
#y = self.height - y
x = (x + 1)*self.gridSize
y = (self.height - y)*self.gridSize
return ( x, y )
def drawWalls(self, wallMatrix):
wallColor = WALL_COLOR
for xNum, x in enumerate(wallMatrix):
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
for yNum, cell in enumerate(x):
if cell: # There's a wall here
pos = (xNum, yNum)
screen = self.to_screen(pos)
screen2 = self.to_screen2(pos)
# draw each quadrant of the square based on adjacent walls
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
# NE quadrant
if (not nIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
if (nIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (eIsWall) and (not neIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# NW quadrant
if (not nIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
if (nIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
if (not nIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
if (nIsWall) and (wIsWall) and (not nwIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
# SE quadrant
if (not sIsWall) and (not eIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
if (sIsWall) and (not eIsWall):
# vertical line
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (eIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (eIsWall) and (not seIsWall):
# outer circle
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
# SW quadrant
if (not sIsWall) and (not wIsWall):
# inner circle
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
if (sIsWall) and (not wIsWall):
# vertical line
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
if (not sIsWall) and (wIsWall):
# horizontal line
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
if (sIsWall) and (wIsWall) and (not swIsWall):
# outer circle
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
def isWall(self, x, y, walls):
if x < 0 or y < 0:
return False
if x >= walls.width or y >= walls.height:
return False
return walls[x][y]
def drawFood(self, foodMatrix ):
foodImages = []
color = FOOD_COLOR
for xNum, x in enumerate(foodMatrix):
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0]
if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
imageRow = []
foodImages.append(imageRow)
for yNum, cell in enumerate(x):
if cell: # There's food here
screen = self.to_screen((xNum, yNum ))
dot = circle( screen,
FOOD_SIZE * self.gridSize,
outlineColor = color, fillColor = color,
width = 1)
imageRow.append(dot)
else:
imageRow.append(None)
return foodImages
def drawCapsules(self, capsules ):
capsuleImages = {}
for capsule in capsules:
( screen_x, screen_y ) = self.to_screen(capsule)
dot = circle( (screen_x, screen_y),
CAPSULE_SIZE * self.gridSize,
outlineColor = CAPSULE_COLOR,
fillColor = CAPSULE_COLOR,
width = 1)
capsuleImages[capsule] = dot
return capsuleImages
def removeFood(self, cell, foodImages ):
x, y = cell
remove_from_screen(foodImages[x][y])
def removeCapsule(self, cell, capsuleImages ):
x, y = cell
remove_from_screen(capsuleImages[(x, y)])
def drawExpandedCells(self, cells):
"""
Draws an overlay of expanded grid positions for search agents
"""
n = float(len(cells))
baseColor = [1.0, 0.0, 0.0]
self.clearExpandedCells()
self.expandedCells = []
for k, cell in enumerate(cells):
screenPos = self.to_screen( cell)
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
block = square(screenPos,
0.5 * self.gridSize,
color = cellColor,
filled = 1, behind=2)
self.expandedCells.append(block)
if self.frameTime < 0:
refresh()
def clearExpandedCells(self):
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
for cell in self.expandedCells:
remove_from_screen(cell)
def updateDistributions(self, distributions):
"Draws an agent's belief distributions"
# copy all distributions so we don't change their state
distributions = map(lambda x: x.copy(), distributions)
if self.distributionImages == None:
self.drawDistributions(self.previousState)
for x in range(len(self.distributionImages)):
for y in range(len(self.distributionImages[0])):
image = self.distributionImages[x][y]
weights = [dist[ (x,y) ] for dist in distributions]
if sum(weights) != 0:
pass
# Fog of war
color = [0.0,0.0,0.0]
colors = GHOST_VEC_COLORS[1:] # With Pacman
if self.capture: colors = GHOST_VEC_COLORS
for weight, gcolor in zip(weights, colors):
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
changeColor(image, formatColor(*color))
refresh()
class FirstPersonPacmanGraphics(PacmanGraphics):
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
self.showGhosts = showGhosts
self.capture = capture
def initialize(self, state, isBlue = False):
self.isBlue = isBlue
PacmanGraphics.startGraphics(self, state)
# Initialize distribution images
walls = state.layout.walls
dist = []
self.layout = state.layout
# Draw the rest
self.distributionImages = None # initialize lazily
self.drawStaticObjects(state)
self.drawAgentObjects(state)
# Information
self.previousState = state
def lookAhead(self, config, state):
if config.getDirection() == 'Stop':
return
else:
pass
# Draw relevant ghosts
allGhosts = state.getGhostStates()
visibleGhosts = state.getVisibleGhosts()
for i, ghost in enumerate(allGhosts):
if ghost in visibleGhosts:
self.drawGhost(ghost, i)
else:
self.currentGhostImages[i] = None
def getGhostColor(self, ghost, ghostIndex):
return GHOST_COLORS[ghostIndex]
def getPosition(self, ghostState):
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
return (-1000, -1000)
else:
return PacmanGraphics.getPosition(self, ghostState)
def add(x, y):
return (x[0] + y[0], x[1] + y[1])
# Saving graphical output
# -----------------------
# Note: to make an animated gif from this postscript output, try the command:
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
# convert is part of imagemagick (freeware)
SAVE_POSTSCRIPT = False
POSTSCRIPT_OUTPUT_DIR = 'frames'
FRAME_NUMBER = 0
import os
def saveFrame():
"Saves the current graphical output as a postscript file"
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
if not SAVE_POSTSCRIPT: return
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
FRAME_NUMBER += 1
writePostscript(name) # writes the current canvas

View File

@ -0,0 +1,402 @@
# graphicsUtils.py
# ----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import sys
import math
import random
import string
import time
import types
import tkinter
import os.path
_Windows = sys.platform == 'win32' # True if on Win95/98/NT
_root_window = None # The root window for graphics output
_canvas = None # The canvas which holds graphics
_canvas_xs = None # Size of canvas object
_canvas_ys = None
_canvas_x = None # Current position on canvas
_canvas_y = None
_canvas_col = None # Current colour (set to black below)
_canvas_tsize = 12
_canvas_tserifs = 0
def formatColor(r, g, b):
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
def colorToVector(color):
return list(map(lambda x: int(x, 16) / 256.0, [color[1:3], color[3:5], color[5:7]]))
if _Windows:
_canvas_tfonts = ['times new roman', 'lucida console']
else:
_canvas_tfonts = ['times', 'lucidasans-24']
pass # XXX need defaults here
def sleep(secs):
global _root_window
if _root_window == None:
time.sleep(secs)
else:
_root_window.update_idletasks()
_root_window.after(int(1000 * secs), _root_window.quit)
_root_window.mainloop()
def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None):
global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color
# Check for duplicate call
if _root_window is not None:
# Lose the window.
_root_window.destroy()
# Save the canvas size parameters
_canvas_xs, _canvas_ys = width - 1, height - 1
_canvas_x, _canvas_y = 0, _canvas_ys
_bg_color = color
# Create the root window
_root_window = tkinter.Tk()
_root_window.protocol('WM_DELETE_WINDOW', _destroy_window)
_root_window.title(title or 'Graphics Window')
_root_window.resizable(0, 0)
# Create the canvas object
try:
_canvas = tkinter.Canvas(_root_window, width=width, height=height)
_canvas.pack()
draw_background()
_canvas.update()
except:
_root_window = None
raise
# Bind to key-down and key-up events
_root_window.bind( "<KeyPress>", _keypress )
_root_window.bind( "<KeyRelease>", _keyrelease )
_root_window.bind( "<FocusIn>", _clear_keys )
_root_window.bind( "<FocusOut>", _clear_keys )
_root_window.bind( "<Button-1>", _leftclick )
_root_window.bind( "<Button-2>", _rightclick )
_root_window.bind( "<Button-3>", _rightclick )
_root_window.bind( "<Control-Button-1>", _ctrl_leftclick)
_clear_keys()
_leftclick_loc = None
_rightclick_loc = None
_ctrl_leftclick_loc = None
def _leftclick(event):
global _leftclick_loc
_leftclick_loc = (event.x, event.y)
def _rightclick(event):
global _rightclick_loc
_rightclick_loc = (event.x, event.y)
def _ctrl_leftclick(event):
global _ctrl_leftclick_loc
_ctrl_leftclick_loc = (event.x, event.y)
def wait_for_click():
while True:
global _leftclick_loc
global _rightclick_loc
global _ctrl_leftclick_loc
if _leftclick_loc != None:
val = _leftclick_loc
_leftclick_loc = None
return val, 'left'
if _rightclick_loc != None:
val = _rightclick_loc
_rightclick_loc = None
return val, 'right'
if _ctrl_leftclick_loc != None:
val = _ctrl_leftclick_loc
_ctrl_leftclick_loc = None
return val, 'ctrl_left'
sleep(0.05)
def draw_background():
corners = [(0,0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)]
polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False)
def _destroy_window(event=None):
sys.exit(0)
# global _root_window
# _root_window.destroy()
# _root_window = None
#print("DESTROY")
def end_graphics():
global _root_window, _canvas, _mouse_enabled
try:
try:
sleep(1)
if _root_window != None:
_root_window.destroy()
except SystemExit as e:
print('Ending graphics raised an exception:', e)
finally:
_root_window = None
_canvas = None
_mouse_enabled = 0
_clear_keys()
def clear_screen(background=None):
global _canvas_x, _canvas_y
_canvas.delete('all')
draw_background()
_canvas_x, _canvas_y = 0, _canvas_ys
def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1):
c = []
for coord in coords:
c.append(coord[0])
c.append(coord[1])
if fillColor == None: fillColor = outlineColor
if filled == 0: fillColor = ""
poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width)
if behind > 0:
_canvas.tag_lower(poly, behind) # Higher should be more visible
return poly
def square(pos, r, color, filled=1, behind=0):
x, y = pos
coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)]
return polygon(coords, color, color, filled, 0, behind=behind)
def circle(pos, r, outlineColor, fillColor=None, endpoints=None, style='pieslice', width=2):
x, y = pos
x0, x1 = x - r - 1, x + r
y0, y1 = y - r - 1, y + r
if endpoints == None:
e = [0, 359]
else:
e = list(endpoints)
while e[0] > e[1]: e[1] = e[1] + 360
return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor or outlineColor,
extent=e[1] - e[0], start=e[0], style=style, width=width)
def image(pos, file="../../blueghost.gif"):
x, y = pos
# img = PhotoImage(file=file)
return _canvas.create_image(x, y, image = tkinter.PhotoImage(file=file), anchor = tkinter.NW)
def refresh():
_canvas.update_idletasks()
def moveCircle(id, pos, r, endpoints=None):
global _canvas_x, _canvas_y
x, y = pos
# x0, x1 = x - r, x + r + 1
# y0, y1 = y - r, y + r + 1
x0, x1 = x - r - 1, x + r
y0, y1 = y - r - 1, y + r
if endpoints == None:
e = [0, 359]
else:
e = list(endpoints)
while e[0] > e[1]: e[1] = e[1] + 360
if os.path.isfile('flag'):
edit(id, ('extent', e[1] - e[0]))
else:
edit(id, ('start', e[0]), ('extent', e[1] - e[0]))
move_to(id, x0, y0)
def edit(id, *args):
_canvas.itemconfigure(id, **dict(args))
def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"):
global _canvas_x, _canvas_y
x, y = pos
font = (font, str(size), style)
return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor)
def changeText(id, newText, font=None, size=12, style='normal'):
_canvas.itemconfigure(id, text=newText)
if font != None:
_canvas.itemconfigure(id, font=(font, '-%d' % size, style))
def changeColor(id, newColor):
_canvas.itemconfigure(id, fill=newColor)
def line(here, there, color=formatColor(0, 0, 0), width=2):
x0, y0 = here[0], here[1]
x1, y1 = there[0], there[1]
return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width)
##############################################################################
### Keypress handling ########################################################
##############################################################################
# We bind to key-down and key-up events.
_keysdown = {}
_keyswaiting = {}
# This holds an unprocessed key release. We delay key releases by up to
# one call to keys_pressed() to get round a problem with auto repeat.
_got_release = None
def _keypress(event):
global _got_release
#remap_arrows(event)
_keysdown[event.keysym] = 1
_keyswaiting[event.keysym] = 1
# print(event.char, event.keycode)
_got_release = None
def _keyrelease(event):
global _got_release
#remap_arrows(event)
try:
del _keysdown[event.keysym]
except:
pass
_got_release = 1
def remap_arrows(event):
# TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT)
if event.char in ['a', 's', 'd', 'w']:
return
if event.keycode in [37, 101]: # LEFT ARROW (win / x)
event.char = 'a'
if event.keycode in [38, 99]: # UP ARROW
event.char = 'w'
if event.keycode in [39, 102]: # RIGHT ARROW
event.char = 'd'
if event.keycode in [40, 104]: # DOWN ARROW
event.char = 's'
def _clear_keys(event=None):
global _keysdown, _got_release, _keyswaiting
_keysdown = {}
_keyswaiting = {}
_got_release = None
def keys_pressed(d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT):
d_o_e(d_w)
if _got_release:
d_o_e(d_w)
return _keysdown.keys()
def keys_waiting():
global _keyswaiting
keys = _keyswaiting.keys()
_keyswaiting = {}
return keys
# Block for a list of keys...
def wait_for_keys():
keys = []
while keys == []:
keys = keys_pressed()
sleep(0.05)
return keys
def remove_from_screen(x,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT):
_canvas.delete(x)
d_o_e(d_w)
def _adjust_coords(coord_list, x, y):
for i in range(0, len(coord_list), 2):
coord_list[i] = coord_list[i] + x
coord_list[i + 1] = coord_list[i + 1] + y
return coord_list
def move_to(object, x, y=None,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT):
if y is None:
try: x, y = x
except: raise 'incomprehensible coordinates'
horiz = True
newCoords = []
current_x, current_y = _canvas.coords(object)[0:2] # first point
for coord in _canvas.coords(object):
if horiz:
inc = x - current_x
else:
inc = y - current_y
horiz = not horiz
newCoords.append(coord + inc)
_canvas.coords(object, *newCoords)
d_o_e(d_w)
def move_by(object, x, y=None,
d_o_e=lambda arg: _root_window.dooneevent(arg),
d_w=tkinter._tkinter.DONT_WAIT, lift=False):
if y is None:
try: x, y = x
except: raise Exception('incomprehensible coordinates')
horiz = True
newCoords = []
for coord in _canvas.coords(object):
if horiz:
inc = x
else:
inc = y
horiz = not horiz
newCoords.append(coord + inc)
_canvas.coords(object, *newCoords)
d_o_e(d_w)
if lift:
_canvas.tag_raise(object)
def writePostscript(filename):
"Writes the current canvas to a postscript file."
psfile = open(filename, 'w')
psfile.write(_canvas.postscript(pageanchor='sw',
y='0.c',
x='0.c'))
psfile.close()
ghost_shape = [
(0, - 0.5),
(0.25, - 0.75),
(0.5, - 0.5),
(0.75, - 0.75),
(0.75, 0.5),
(0.5, 0.75),
(- 0.5, 0.75),
(- 0.75, 0.5),
(- 0.75, - 0.75),
(- 0.5, - 0.5),
(- 0.25, - 0.75)
]
if __name__ == '__main__':
begin_graphics()
clear_screen()
ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape]
g = polygon(ghost_shape, formatColor(1, 1, 1))
move_to(g, (50, 50))
circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15])
sleep(2)

View File

@ -0,0 +1,84 @@
# keyboardAgents.py
# -----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from game import Agent
from game import Directions
import random
class KeyboardAgent(Agent):
"""
An agent controlled by the keyboard.
"""
# NOTE: Arrow keys also work.
WEST_KEY = 'a'
EAST_KEY = 'd'
NORTH_KEY = 'w'
SOUTH_KEY = 's'
STOP_KEY = 'q'
def __init__( self, index = 0 ):
self.lastMove = Directions.STOP
self.index = index
self.keys = []
def getAction( self, state):
from graphicsUtils import keys_waiting
from graphicsUtils import keys_pressed
keys = list(keys_waiting()) + list(keys_pressed())
if keys != []:
self.keys = keys
legal = state.getLegalActions(self.index)
move = self.getMove(legal)
if move == Directions.STOP:
# Try to move in the same direction as before
if self.lastMove in legal:
move = self.lastMove
if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP
if move not in legal:
move = random.choice(legal)
self.lastMove = move
return move
def getMove(self, legal):
move = Directions.STOP
if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST
if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST
if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
return move
class KeyboardAgent2(KeyboardAgent):
"""
A second agent controlled by the keyboard.
"""
# NOTE: Arrow keys also work.
WEST_KEY = 'j'
EAST_KEY = "l"
NORTH_KEY = 'i'
SOUTH_KEY = 'k'
STOP_KEY = 'u'
def getMove(self, legal):
move = Directions.STOP
if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST
if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST
if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
return move

View File

@ -0,0 +1,150 @@
# layout.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from util import manhattanDistance
from game import Grid
import os
import random
from functools import reduce
VISIBILITY_MATRIX_CACHE = {}
class Layout:
"""
A Layout manages the static information about the game board.
"""
def __init__(self, layoutText):
self.width = len(layoutText[0])
self.height= len(layoutText)
self.walls = Grid(self.width, self.height, False)
self.food = Grid(self.width, self.height, False)
self.capsules = []
self.agentPositions = []
self.numGhosts = 0
self.processLayoutText(layoutText)
self.layoutText = layoutText
self.totalFood = len(self.food.asList())
# self.initializeVisibilityMatrix()
def getNumGhosts(self):
return self.numGhosts
def initializeVisibilityMatrix(self):
global VISIBILITY_MATRIX_CACHE
if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE:
from game import Directions
vecs = [(-0.5,0), (0.5,0),(0,-0.5),(0,0.5)]
dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST]
vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()})
for x in range(self.width):
for y in range(self.height):
if self.walls[x][y] == False:
for vec, direction in zip(vecs, dirs):
dx, dy = vec
nextx, nexty = x + dx, y + dy
while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)] :
vis[x][y][direction].add((nextx, nexty))
nextx, nexty = x + dx, y + dy
self.visibility = vis
VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis
else:
self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)]
def isWall(self, pos):
x, col = pos
return self.walls[x][col]
def getRandomLegalPosition(self):
x = random.choice(range(self.width))
y = random.choice(range(self.height))
while self.isWall( (x, y) ):
x = random.choice(range(self.width))
y = random.choice(range(self.height))
return (x,y)
def getRandomCorner(self):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
return random.choice(poses)
def getFurthestCorner(self, pacPos):
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
return pos
def isVisibleFrom(self, ghostPos, pacPos, pacDirection):
row, col = [int(x) for x in pacPos]
return ghostPos in self.visibility[row][col][pacDirection]
def __str__(self):
return "\n".join(self.layoutText)
def deepCopy(self):
return Layout(self.layoutText[:])
def processLayoutText(self, layoutText):
"""
Coordinates are flipped from the input format to the (x,y) convention here
The shape of the maze. Each character
represents a different type of object.
% - Wall
. - Food
o - Capsule
G - Ghost
P - Pacman
Other characters are ignored.
"""
maxY = self.height - 1
for y in range(self.height):
for x in range(self.width):
layoutChar = layoutText[maxY - y][x]
self.processLayoutChar(x, y, layoutChar)
self.agentPositions.sort()
self.agentPositions = [ ( i == 0, pos) for i, pos in self.agentPositions]
def processLayoutChar(self, x, y, layoutChar):
if layoutChar == '%':
self.walls[x][y] = True
elif layoutChar == '.':
self.food[x][y] = True
elif layoutChar == 'o':
self.capsules.append((x, y))
elif layoutChar == 'P':
self.agentPositions.append( (0, (x, y) ) )
elif layoutChar in ['G']:
self.agentPositions.append( (1, (x, y) ) )
self.numGhosts += 1
elif layoutChar in ['1', '2', '3', '4']:
self.agentPositions.append( (int(layoutChar), (x,y)))
self.numGhosts += 1
def getLayout(name, back = 2):
if name.endswith('.lay'):
layout = tryToLoad('layouts/' + name)
if layout == None: layout = tryToLoad(name)
else:
layout = tryToLoad('layouts/' + name + '.lay')
if layout == None: layout = tryToLoad(name + '.lay')
if layout == None and back >= 0:
curdir = os.path.abspath('.')
os.chdir('..')
layout = getLayout(name, back -1)
os.chdir(curdir)
return layout
def tryToLoad(fullname):
if(not os.path.exists(fullname)): return None
f = open(fullname)
try: return Layout([line.strip() for line in f])
finally: f.close()

View File

@ -0,0 +1,37 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%. % %.%
% %%%%% % %%% %%% %%%%%%% % %
% % % % % % % %
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
% % % % % % % % % % % % %
% %%% % % % %%% %%%%% %%% % %%% %%% %
% % % % % % % % %
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
% % % % % % %
% % %%%%% % %%% % % %%% % %%% %%% % %
% % % % % % % % % % % % % %
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
% % % % % % % % % %
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
% % % % % % % % %
% % % % % % %%% %%% %%% % % % % % %
% % % % % %% % % % % % % % % %
% % %%%%% % %%% %%% % %%% %%% %%%%%
% % % % % % % % % % %
% %%% % % % %%% %%% %%%%%%%%% % %%%
% % % % % % %
% %%% %%%%%%%%%%%%%%%%%%%%% % % %%% %
% % % %
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
% % % % % % % % % % % %
% % %%% %%% % % % %%%%%%%%% %%% % % %
% % % % % % %P % % % % % %
% %%% %%% %%% % %%% % % %%%%% % %%%%%
% % % % % % % %
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
% % % % % % % % % % % % % % %
% % %%% % % % % %%%%%%%%% % % % % % %
% % % %
% % % %%% %%% %%%%%%% %%% %%% %%% %
%.% % % % % .%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,37 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % % % %
% %%%%%%% % %%% % %%% %%% %%%%%%% % %
% % % % % % % %
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
% % % % % % % % % % % % % %
% %%% % % % %%% %%%%% %%% % %%% %%% %
% % % % % % % % %
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
% % % % % % %
% % %%%%% % %%% % % %%% % %%% %%% % %
% % % % % % % % % % % % % %
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
% % % % % % % % % %
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
% % % % % % % % % % % %
% % % % % %%% %%% %%% %%% % % % % % %
% % % % % % % % %
%%% %%%%%%% % % %%%%% %%% % %%% %%%%%
% % % % % % % % % %
%%%%% % % %%%%%%%%% %%%%%%%%%%% % %%%
% % % % % % % % %
% %%% %%%%% %%%%%%%%% %%%%% % % %%% %
% % % % % % %
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
% % % % % % % % % % % %
% % %%% %%% % % % %%%%%%%%% %%% % % %
% % % % % % % % % % % % %
% %%% %%% %%%%% %%% % % %%%%% % %%%%%
% % % % % % % % %
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
% % % % % % % % % % % % % % %
% % %%% % % % % %%%%%%%%% % % % % % %
% % % % % %
% % % % %%% %%% %%%%%%% %%% %%% %%% %
%.% % % % % % % % P%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.%.........%% G % o%%%%.....%
%.%.%%%%%%%.%%%%%% %%%%%%%.%%.%
%............%...%............%
%%%%%...%%%.. ..%.%...%.%%%
%o%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
% ..........Po...%...%. o%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,15 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.....%.................%.....%
%.%%%.%.%%%.%%%%%%%.%%%.%.....%
%.%...%.%......%......%.%.....%
%...%%%.%.%%%%.%.%%%%...%%%...%
%%%.%.%.%.%......%..%.%...%.%%%
%...%.%%%.%.%%% %%%.%.%%%.%...%
%.%%%.......% %.......%%%.%
%...%.%%%%%.%%%%%%%.%.%%%.%...%
%%%.%...%.%....%....%.%...%.%%%
%...%%%.%.%%%%.%.%%%%.%.%%%...%
%.......%......%......%.....%.%
%.....%.%%%.%%%%%%%.%%%.%.%%%.%
%.....%........P....%...%.....%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,14 @@
%%%%%%%%%%%%%%
%. . . . . % %
% % %
%. . . . . %G%
% % %
%. . . . . % %
% % %
%. . . . . % %
% P %G%
%. . . . . % %
% % %
%. . . . . % %
% % %
%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%
%G. G ....%
%.% % %%%%%% %.%%.%
%.%o% % o% %.o%.%
%.%%%.% %%% %..%.%
%..... P %..%G%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,9 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%...o%
%.%%.%.%%..%%.%.%%.%
%...... G GG%......%
%.%.%%.%% %%%.%%.%.%
%.%....% ooo%.%..%.%
%.%.%%.% %% %.%.%%.%
%o%......P....%....%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,11 @@
%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% %
% P %
% %
% %
% %
%. %
%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%
%....%
% %%.%
% %%.%
%.P .%
%.%%%%
%....%
%%%%%%

View File

@ -0,0 +1,11 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%....%
%.%%.%.%%%%%%.%.%%.%
%.%..............%.%
%.%.%%.%% %%.%%.%.%
%......%G G%......%
%.%.%%.%%%%%%.%%.%.%
%.%..............%.%
%.%%.%.%%%%%%.%.%%.%
%....%...P....%...o%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,14 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%. % % % %.%
% % % %%%%%% %%%%%%% % %
% % % % % %
%%%%% %%%%% %%% %% %%%%% % %%%
% % % % % % % % %
% %%% % % % %%%%%%%% %%% %%% %
% % %% % % % %
%%% % %%%%%%% %%%% %%% % % % %
% % %% % % %
% % %%%%% % %%%% % %%% %%% % %
% % % % % % %%% %
%. %P%%%%% % %%% % .%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
% %% % % %%% %%% %% ... %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % % %% %% %% ... %
% %% % % % % % %%%% %%% %%%%%% %
% % % % % % %% %%%%%%%% ... %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% ... %
% %%%%%% %%%%%%% %% %%%%%% %
%%%%%% % %%%% %% % ... %
% %%%%%% %%%%% % %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%%%% %%%%%%%%%%% %% %% %
%%%%%%%%%% %%%%%% %
%. %%%%%%%%%%%%%%%% ...... %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
% %% % % %%%%%%% %% %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % %% %% %
% %% % % % % % %%%% %%% %%%%%% %
% % % % % % %% %%%%%%%% %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% %
% %%%%%% %%%%%%% %% %%%%%% %
%%%%%% % %%%% %% % %
% %%%%%% %%%%% % %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%%%% %%%%%%%%%%% %% %% %
%%%%%%%%%% %%%%%% %
%. %%%%%%%%%%%%%%%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,6 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%.% ....%% G %%%%%% o%%.%
%.%o%%%%%%%.%%%%%%% %%%%%.%
% %%%.%%%%%.%%%%%%%.%%%.%.%%%.%
% ..........Po...%.........%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,18 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
% %% % % %%% %%% %%GG %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % % %%GG %% %
% %% % % % % % %%%%% %%% %%%%%% %
% %% % % % % %% %%%%%%%%% %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% %
% %%% %% %%%%%%% %% %%%%%% %
%%%%%% % % %% %% %
% %%%%%% %% %% %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%% %%%%% %%%%%% %
%%%%%%%% % %%%%%% %
%. %%%%%%%%%%%%%%%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%............%%%%%............%
%%%.%...%%%.........%.%...%.%%%
%...%%%.%.%%%%.%.%%%%%%.%%%...%
%.%.....%......%......%.....%.%
%.%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
%.....%........P....%...%.....%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%
%.P G%
% %.%G%%%
%G %%%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%...%.........%%...%
%.%.%.%%%%%%%%%%.%.%
%..................%
%%%%%%%%.%.%%%%%%%P%
%%%%%%%%....... %
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,9 @@
%%%%%%%%%%%%%%%%%%%%%%%%%
%.. P .... .... %
%.. ... ... ... ... %
%.. ... ... ... ... %
%.. .... .... G %
%.. ... ... ... ... %
%.. ... ... ... ... %
%.. .... .... o%
%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,23 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% % %
% % %
% % %
% % %
% % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
% % %
% % %
% % %
% %
% %
% %
%. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%..................%
%..................%
%........P.........%
%..................%
%..................%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,27 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%............%%............%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%o%%%%.%%%%%.%%.%%%%%.%%%%o%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%..........................%
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
%......%%....%%....%%......%
%%%%%%.%%%%% %% %%%%%.%%%%%%
%%%%%%.%%%%% %% %%%%%.%%%%%%
%%%%%%.% %.%%%%%%
%%%%%%.% %%%% %%%% %.%%%%%%
% . %G GG G% . %
%%%%%%.% %%%%%%%%%% %.%%%%%%
%%%%%%.% %.%%%%%%
%%%%%%.% %%%%%%%%%% %.%%%%%%
%............%%............%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
%o..%%....... .......%%..o%
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
%......%%....%%....%%......%
%.%%%%%%%%%%.%%.%%%%%%%%%%.%
%.............P............%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%o....o%GGGG%o....o%
%..%...%% %%...%..%
%.%o.%........%.o%.%
%.o%.%.%%%%%%.%.%o.%
%........P.........%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%......%G G%......%
%.%%...%% %%...%%.%
%.%o.%........%.o%.%
%.%%.%.%%%%%%.%.%%.%
%........P.........%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,10 @@
%%%%%%%%%%%%%%%%%%%%%%
% %% % % %
% %%%%%% % %%%%%% %
%%%%%% P % %
% % %%%%%% %% %%%%%
% %%%% % % %
% %%% %%% % %
%%%%%%%%%% %%%%%% %
%. %% %
%%%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,15 @@
%%%%%%%%%
%.. % G %
%%% %%%%%
% %
%%%%%%% %
% %
% %%%%% %
% % %
%%%%% % %
% %o%
% %%%%%%%
% .%
%%%%%%%.%
%Po .%
%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%%%%%%%%%%%%%
%. ...P .%
%.%%.%%.%%.%%.%% %.%
% %% %..... %.%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,10 @@
%%%%%
% . %
%.G.%
% . %
%. .%
% %
% .%
% %
%P .%
%%%%%

View File

@ -0,0 +1,3 @@
%%%%%%%%%%
%. P%
%%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%
%.P %
%%% %
%. %
%%%%%

View File

@ -0,0 +1,8 @@
%%%%%%%%
%. .%
% P %
% %%%% %
% % %
% % %%%%
%.% .%
%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%
% P%
% %%% %
% % %
%% %%
%. %%%%
%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
% G %...%
%%%%%%% %
%Po %
%.%%.%%.%
%.%%....%
%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%
%.. ..%
%%%%.%% %
% P %
%.%% %%.%
%.%. .%
%%%%%%%%%

View File

@ -0,0 +1,5 @@
%%%%%%%%
% P G%
%G%%%%%%
%.... %
%%%%%%%%

View File

@ -0,0 +1,13 @@
%%%%%%%%%%%%%%%%%%%%
%o...%........%...o%
%.%%.%.%%..%%.%.%%.%
%.%.....%..%.....%.%
%.%.%%.%% %%.%%.%.%
%...... GGGG%.%....%
%.%....%%%%%%.%..%.%
%.%....% oo%.%..%.%
%.%....% %%%%.%..%.%
%.%...........%..%.%
%.%%.%.%%%%%%.%.%%.%
%o...%...P....%...o%
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,7 @@
%%%%%%%%%%%%%%%%%%%%
%. ..% %
%.%%.%%.%%.%%.%% % %
% P % %
%%%%%%%%%%%%%%%%%% %
%..... %
%%%%%%%%%%%%%%%%%%%%

View File

@ -0,0 +1,684 @@
# pacman.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
Pacman.py holds the logic for the classic pacman game along with the main
code to run a game. This file is divided into three sections:
(i) Your interface to the pacman world:
Pacman is a complex environment. You probably don't want to
read through all of the code we wrote to make the game runs
correctly. This section contains the parts of the code
that you will need to understand in order to complete the
project. There is also some code in game.py that you should
understand.
(ii) The hidden secrets of pacman:
This section contains all of the logic code that the pacman
environment uses to decide who can move where, who dies when
things collide, etc. You shouldn't need to read this section
of code, but you can if you want.
(iii) Framework to start a game:
The final section contains the code for reading the command
you use to set up the game, then starting up a new game, along with
linking in all the external parts (agent functions, graphics).
Check this section out to see all the options available to you.
To play your first game, type 'python pacman.py' from the command line.
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
"""
from game import GameStateData
from game import Game
from game import Directions
from game import Actions
from util import nearestPoint
from util import manhattanDistance
import util, layout
import sys, types, time, random, os
###################################################
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
###################################################
class GameState:
"""
A GameState specifies the full game state, including the food, capsules,
agent configurations and score changes.
GameStates are used by the Game object to capture the actual state of the game and
can be used by agents to reason about the game.
Much of the information in a GameState is stored in a GameStateData object. We
strongly suggest that you access that data via the accessor methods below rather
than referring to the GameStateData object directly.
Note that in classic Pacman, Pacman is always agent 0.
"""
####################################################
# Accessor methods: use these to access state data #
####################################################
# static variable keeps track of which states have had getLegalActions called
explored = set()
def getAndResetExplored():
tmp = GameState.explored.copy()
GameState.explored = set()
return tmp
getAndResetExplored = staticmethod(getAndResetExplored)
def getLegalActions( self, agentIndex=0 ):
"""
Returns the legal actions for the agent specified.
"""
# GameState.explored.add(self)
if self.isWin() or self.isLose(): return []
if agentIndex == 0: # Pacman is moving
return PacmanRules.getLegalActions( self )
else:
return GhostRules.getLegalActions( self, agentIndex )
def generateSuccessor( self, agentIndex, action):
"""
Returns the successor state after the specified agent takes the action.
"""
# Check that successors exist
if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.')
# Copy current state
state = GameState(self)
# Let agent's logic deal with its action's effects on the board
if agentIndex == 0: # Pacman is moving
state.data._eaten = [False for i in range(state.getNumAgents())]
PacmanRules.applyAction( state, action )
else: # A ghost is moving
GhostRules.applyAction( state, action, agentIndex )
# Time passes
if agentIndex == 0:
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
else:
GhostRules.decrementTimer( state.data.agentStates[agentIndex] )
# Resolve multi-agent effects
GhostRules.checkDeath( state, agentIndex )
# Book keeping
state.data._agentMoved = agentIndex
state.data.score += state.data.scoreChange
GameState.explored.add(self)
GameState.explored.add(state)
return state
def getLegalPacmanActions( self ):
return self.getLegalActions( 0 )
def generatePacmanSuccessor( self, action ):
"""
Generates the successor state after the specified pacman move
"""
return self.generateSuccessor( 0, action )
def getPacmanState( self ):
"""
Returns an AgentState object for pacman (in game.py)
state.pos gives the current position
state.direction gives the travel vector
"""
return self.data.agentStates[0].copy()
def getPacmanPosition( self ):
return self.data.agentStates[0].getPosition()
def getGhostStates( self ):
return self.data.agentStates[1:]
def getGhostState( self, agentIndex ):
if agentIndex == 0 or agentIndex >= self.getNumAgents():
raise Exception("Invalid index passed to getGhostState")
return self.data.agentStates[agentIndex]
def getGhostPosition( self, agentIndex ):
if agentIndex == 0:
raise Exception("Pacman's index passed to getGhostPosition")
return self.data.agentStates[agentIndex].getPosition()
def getGhostPositions(self):
return [s.getPosition() for s in self.getGhostStates()]
def getNumAgents( self ):
return len( self.data.agentStates )
def getScore( self ):
return float(self.data.score)
def getCapsules(self):
"""
Returns a list of positions (x,y) of the remaining capsules.
"""
return self.data.capsules
def getNumFood( self ):
return self.data.food.count()
def getFood(self):
"""
Returns a Grid of boolean food indicator variables.
Grids can be accessed via list notation, so to check
if there is food at (x,y), just call
currentFood = state.getFood()
if currentFood[x][y] == True: ...
"""
return self.data.food
def getWalls(self):
"""
Returns a Grid of boolean wall indicator variables.
Grids can be accessed via list notation, so to check
if there is a wall at (x,y), just call
walls = state.getWalls()
if walls[x][y] == True: ...
"""
return self.data.layout.walls
def hasFood(self, x, y):
return self.data.food[x][y]
def hasWall(self, x, y):
return self.data.layout.walls[x][y]
def isLose( self ):
return self.data._lose
def isWin( self ):
return self.data._win
#############################################
# Helper methods: #
# You shouldn't need to call these directly #
#############################################
def __init__( self, prevState = None ):
"""
Generates a new state by copying information from its predecessor.
"""
if prevState != None: # Initial state
self.data = GameStateData(prevState.data)
else:
self.data = GameStateData()
def deepCopy( self ):
state = GameState( self )
state.data = self.data.deepCopy()
return state
def __eq__( self, other ):
"""
Allows two states to be compared.
"""
return hasattr(other, 'data') and self.data == other.data
def __hash__( self ):
"""
Allows states to be keys of dictionaries.
"""
return hash( self.data )
def __str__( self ):
return str(self.data)
def initialize( self, layout, numGhostAgents=1000 ):
"""
Creates an initial game state from a layout array (see layout.py).
"""
self.data.initialize(layout, numGhostAgents)
############################################################################
# THE HIDDEN SECRETS OF PACMAN #
# #
# You shouldn't need to look through the code in this section of the file. #
############################################################################
SCARED_TIME = 40 # Moves ghosts are scared
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
TIME_PENALTY = 1 # Number of points lost each round
class ClassicGameRules:
"""
These game rules manage the control flow of a game, deciding when
and how the game starts and ends.
"""
def __init__(self, timeout=30):
self.timeout = timeout
def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False):
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
initState = GameState()
initState.initialize( layout, len(ghostAgents) )
game = Game(agents, display, self, catchExceptions=catchExceptions)
game.state = initState
self.initialState = initState.deepCopy()
self.quiet = quiet
return game
def process(self, state, game):
"""
Checks to see whether it is time to end the game.
"""
if state.isWin(): self.win(state, game)
if state.isLose(): self.lose(state, game)
def win( self, state, game ):
if not self.quiet: print("Pacman emerges victorious! Score: %d" % state.data.score)
game.gameOver = True
def lose( self, state, game ):
if not self.quiet: print("Pacman died! Score: %d" % state.data.score)
game.gameOver = True
def getProgress(self, game):
return float(game.state.getNumFood()) / self.initialState.getNumFood()
def agentCrash(self, game, agentIndex):
if agentIndex == 0:
print("Pacman crashed")
else:
print("A ghost crashed")
def getMaxTotalTime(self, agentIndex):
return self.timeout
def getMaxStartupTime(self, agentIndex):
return self.timeout
def getMoveWarningTime(self, agentIndex):
return self.timeout
def getMoveTimeout(self, agentIndex):
return self.timeout
def getMaxTimeWarnings(self, agentIndex):
return 0
class PacmanRules:
"""
These functions govern how pacman interacts with his environment under
the classic game rules.
"""
PACMAN_SPEED=1
def getLegalActions( state ):
"""
Returns a list of possible actions.
"""
return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls )
getLegalActions = staticmethod( getLegalActions )
def applyAction( state, action ):
"""
Edits the state to reflect the results of the action.
"""
legal = PacmanRules.getLegalActions( state )
if action not in legal:
raise Exception("Illegal action " + str(action))
pacmanState = state.data.agentStates[0]
# Update Configuration
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
# Eat
next = pacmanState.configuration.getPosition()
nearest = nearestPoint( next )
if manhattanDistance( nearest, next ) <= 0.5 :
# Remove food
PacmanRules.consume( nearest, state )
applyAction = staticmethod( applyAction )
def consume( position, state ):
x,y = position
# Eat food
if state.data.food[x][y]:
state.data.scoreChange += 10
state.data.food = state.data.food.copy()
state.data.food[x][y] = False
state.data._foodEaten = position
# TODO: cache numFood?
numFood = state.getNumFood()
if numFood == 0 and not state.data._lose:
state.data.scoreChange += 500
state.data._win = True
# Eat capsule
if( position in state.getCapsules() ):
state.data.capsules.remove( position )
state.data._capsuleEaten = position
# Reset all ghosts' scared timers
for index in range( 1, len( state.data.agentStates ) ):
state.data.agentStates[index].scaredTimer = SCARED_TIME
consume = staticmethod( consume )
class GhostRules:
"""
These functions dictate how ghosts interact with their environment.
"""
GHOST_SPEED=1.0
def getLegalActions( state, ghostIndex ):
"""
Ghosts cannot stop, and cannot turn around unless they
reach a dead end, but can turn 90 degrees at intersections.
"""
conf = state.getGhostState( ghostIndex ).configuration
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
reverse = Actions.reverseDirection( conf.direction )
if Directions.STOP in possibleActions:
possibleActions.remove( Directions.STOP )
if reverse in possibleActions and len( possibleActions ) > 1:
possibleActions.remove( reverse )
return possibleActions
getLegalActions = staticmethod( getLegalActions )
def applyAction( state, action, ghostIndex):
legal = GhostRules.getLegalActions( state, ghostIndex )
if action not in legal:
raise Exception("Illegal ghost action " + str(action))
ghostState = state.data.agentStates[ghostIndex]
speed = GhostRules.GHOST_SPEED
if ghostState.scaredTimer > 0: speed /= 2.0
vector = Actions.directionToVector( action, speed )
ghostState.configuration = ghostState.configuration.generateSuccessor( vector )
applyAction = staticmethod( applyAction )
def decrementTimer( ghostState):
timer = ghostState.scaredTimer
if timer == 1:
ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos )
ghostState.scaredTimer = max( 0, timer - 1 )
decrementTimer = staticmethod( decrementTimer )
def checkDeath( state, agentIndex):
pacmanPosition = state.getPacmanPosition()
if agentIndex == 0: # Pacman just moved; Anyone can kill him
for index in range( 1, len( state.data.agentStates ) ):
ghostState = state.data.agentStates[index]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill( pacmanPosition, ghostPosition ):
GhostRules.collide( state, ghostState, index )
else:
ghostState = state.data.agentStates[agentIndex]
ghostPosition = ghostState.configuration.getPosition()
if GhostRules.canKill( pacmanPosition, ghostPosition ):
GhostRules.collide( state, ghostState, agentIndex )
checkDeath = staticmethod( checkDeath )
def collide( state, ghostState, agentIndex):
if ghostState.scaredTimer > 0:
state.data.scoreChange += 200
GhostRules.placeGhost(state, ghostState)
ghostState.scaredTimer = 0
# Added for first-person
state.data._eaten[agentIndex] = True
else:
if not state.data._win:
state.data.scoreChange -= 500
state.data._lose = True
collide = staticmethod( collide )
def canKill( pacmanPosition, ghostPosition ):
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
canKill = staticmethod( canKill )
def placeGhost(state, ghostState):
ghostState.configuration = ghostState.start
placeGhost = staticmethod( placeGhost )
#############################
# FRAMEWORK TO START A GAME #
#############################
def default(str):
return str + ' [Default: %default]'
def parseAgentArgs(str):
if str == None: return {}
pieces = str.split(',')
opts = {}
for p in pieces:
if '=' in p:
key, val = p.split('=')
else:
key,val = p, 1
opts[key] = val
return opts
def readCommand( argv ):
"""
Processes the command used to run pacman from the command line.
"""
from optparse import OptionParser
usageStr = """
USAGE: python pacman.py <options>
EXAMPLES: (1) python pacman.py
- starts an interactive game
(2) python pacman.py --layout smallClassic --zoom 2
OR python pacman.py -l smallClassic -z 2
- starts an interactive game on a smaller board, zoomed in
"""
parser = OptionParser(usageStr)
parser.add_option('-n', '--numGames', dest='numGames', type='int',
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
parser.add_option('-l', '--layout', dest='layout',
help=default('the LAYOUT_FILE from which to load the map layout'),
metavar='LAYOUT_FILE', default='mediumClassic')
parser.add_option('-p', '--pacman', dest='pacman',
help=default('the agent TYPE in the pacmanAgents module to use'),
metavar='TYPE', default='KeyboardAgent')
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
help='Display output as text only', default=False)
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
help='Generate minimal output and no graphics', default=False)
parser.add_option('-g', '--ghosts', dest='ghost',
help=default('the ghost agent TYPE in the ghostAgents module to use'),
metavar = 'TYPE', default='RandomGhost')
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
help=default('The maximum number of ghosts to use'), default=4)
parser.add_option('-z', '--zoom', type='float', dest='zoom',
help=default('Zoom the size of the graphics window'), default=1.0)
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
help='Fixes the random seed to always play the same game', default=False)
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
help='Writes game histories to a file (named by the time they were played)', default=False)
parser.add_option('--replay', dest='gameToReplay',
help='A recorded game file (pickle) to replay', default=None)
parser.add_option('-a','--agentArgs',dest='agentArgs',
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
help=default('How many episodes are training (suppresses output)'), default=0)
parser.add_option('--frameTime', dest='frameTime', type='float',
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
help='Turns on exception handling and timeouts during games', default=False)
parser.add_option('--timeout', dest='timeout', type='int',
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
options, otherjunk = parser.parse_args(argv)
if len(otherjunk) != 0:
raise Exception('Command line input not understood: ' + str(otherjunk))
args = dict()
# Fix the random seed
if options.fixRandomSeed: random.seed('cs188')
# Choose a layout
args['layout'] = layout.getLayout( options.layout )
if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found")
# Choose a Pacman agent
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
pacmanType = loadAgent(options.pacman, noKeyboard)
agentOpts = parseAgentArgs(options.agentArgs)
if options.numTraining > 0:
args['numTraining'] = options.numTraining
if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
args['pacman'] = pacman
# Don't display training games
if 'numTrain' in agentOpts:
options.numQuiet = int(agentOpts['numTrain'])
options.numIgnore = int(agentOpts['numTrain'])
# Choose a ghost agent
ghostType = loadAgent(options.ghost, noKeyboard)
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
# Choose a display format
if options.quietGraphics:
import textDisplay
args['display'] = textDisplay.NullGraphics()
elif options.textGraphics:
import textDisplay
textDisplay.SLEEP_TIME = options.frameTime
args['display'] = textDisplay.PacmanGraphics()
else:
import graphicsDisplay
args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime)
args['numGames'] = options.numGames
args['record'] = options.record
args['catchExceptions'] = options.catchExceptions
args['timeout'] = options.timeout
# Special case: recorded games don't use the runGames method or args structure
if options.gameToReplay != None:
print('Replaying recorded game %s.' % options.gameToReplay)
import pickle
f = open(options.gameToReplay, 'rb')
try: recorded = pickle.load(f)
finally: f.close()
recorded['display'] = args['display']
replayGame(**recorded)
sys.exit(0)
return args
def loadAgent(pacman, nographics):
# Looks through all pythonPath Directories for the right module,
pythonPathStr = os.path.expandvars("$PYTHONPATH")
if pythonPathStr.find(';') == -1:
pythonPathDirs = pythonPathStr.split(':')
else:
pythonPathDirs = pythonPathStr.split(';')
pythonPathDirs.append('.')
for moduleDir in pythonPathDirs:
if not os.path.isdir(moduleDir): continue
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
for modulename in moduleNames:
try:
module = __import__(modulename[:-3])
except ImportError:
continue
if pacman in dir(module):
if nographics and modulename == 'keyboardAgents.py':
raise Exception('Using the keyboard requires graphics (not text display)')
return getattr(module, pacman)
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
def replayGame( layout, actions, display ):
import pacmanAgents, ghostAgents
rules = ClassicGameRules()
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
game = rules.newGame( layout, agents[0], agents[1:], display )
state = game.state
display.initialize(state.data)
for action in actions:
# Execute the action
state = state.generateSuccessor( *action )
# Change the display
display.update( state.data )
# Allow for game specific conditions (winning, losing, etc.)
rules.process(state, game)
display.finish()
def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ):
import __main__
__main__.__dict__['_display'] = display
rules = ClassicGameRules(timeout)
games = []
for i in range( numGames ):
beQuiet = i < numTraining
if beQuiet:
# Suppress output and graphics
import textDisplay
gameDisplay = textDisplay.NullGraphics()
rules.quiet = True
else:
gameDisplay = display
rules.quiet = False
game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
game.run()
if not beQuiet: games.append(game)
if record:
import time, pickle
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
f = open(fname, 'wb')
components = {'layout': layout, 'actions': game.moveHistory}
pickle.dump(components, f)
f.close()
if (numGames-numTraining) > 0:
scores = [game.state.getScore() for game in games]
wins = [game.state.isWin() for game in games]
winRate = wins.count(True)/ float(len(wins))
print('Average Score:', sum(scores) / float(len(scores)))
print('Scores: ', ', '.join([str(score) for score in scores]))
print('Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate))
print('Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins]))
return games
if __name__ == '__main__':
"""
The main function called when pacman.py is run
from the command line:
> python pacman.py
See the usage string for more details.
> python pacman.py --help
"""
args = readCommand( sys.argv[1:] ) # Get game components based on input
runGames( **args )
# import cProfile
# cProfile.run("runGames( **args )")
pass

View File

@ -0,0 +1,52 @@
# pacmanAgents.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from pacman import Directions
from game import Agent
import random
import game
import util
class LeftTurnAgent(game.Agent):
"An agent that turns left at every opportunity"
def getAction(self, state):
legal = state.getLegalPacmanActions()
current = state.getPacmanState().configuration.direction
if current == Directions.STOP: current = Directions.NORTH
left = Directions.LEFT[current]
if left in legal: return left
if current in legal: return current
if Directions.RIGHT[current] in legal: return Directions.RIGHT[current]
if Directions.LEFT[left] in legal: return Directions.LEFT[left]
return Directions.STOP
class GreedyAgent(Agent):
def __init__(self, evalFn="scoreEvaluation"):
self.evaluationFunction = util.lookup(evalFn, globals())
assert self.evaluationFunction != None
def getAction(self, state):
# Generate candidate actions
legal = state.getLegalPacmanActions()
if Directions.STOP in legal: legal.remove(Directions.STOP)
successors = [(state.generateSuccessor(0, action), action) for action in legal]
scored = [(self.evaluationFunction(state), action) for state, action in successors]
bestScore = max(scored)[0]
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
return random.choice(bestActions)
def scoreEvaluation(state):
return state.getScore()

View File

@ -0,0 +1,18 @@
# projectParams.py
# ----------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
STUDENT_CODE_DEFAULT = 'searchAgents.py,search.py'
PROJECT_TEST_CLASSES = 'searchTestClasses.py'
PROJECT_NAME = 'Project 1: Search'
BONUS_PIC = False

View File

@ -0,0 +1,164 @@
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
# user made functions
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def baseSearchFunction(problem, data_structure):
"""
Since the implementation of a Depth First Search and Breadth First Search
are nearly identical, we can simply switch the date structure based on the
order we recieve our nodes; i.e. change the direction we pop, push nodes.
"""
# The path that takes us from the start node to the destination
answer_path = []
# Set the open_nodes data structure as either a Stack (DFS) or Queue (BFS)
open_nodes = data_structure()
# Add the starting state and the empty list to our open nodes
open_nodes.push((problem.getStartState(), answer_path))
# Initialize closed nodes to contain nothing
closed_nodes = []
# While there is at least one item in our open_nodes
while(not open_nodes.isEmpty()):
# Assign current_node and answer_path to an element from one side of the list
current_node, answer_path = open_nodes.pop()
# If our current node isn't closed
if(current_node not in closed_nodes):
# Add the current node to the set of closed nodes
closed_nodes.append(current_node)
# If we're at the destination
if(problem.isGoalState(current_node)):
# Return the path we used to get here
return answer_path
# Set successors equal to the children of the current node
successors = problem.getSuccessors(current_node)
# For each successor
for state in successors:
#Set the node, path equal to the node and path of the state (We're not concerned about the cost)
node, path, _ = state
#If the current node isn't in the set of closed nodes
if(node not in closed_nodes):
# Add the node and path to the set of open nodes
open_nodes.push((node, answer_path + [path]))
#Return the 'best' answer_path we could find; If we're returning here, we didn't find the destination
return answer_path
def depthFirstSearch(problem):
"""Search the deepest nodes in the search tree first."""
#Use a stack in order to perform a Depth First Search
return baseSearchFunction(problem, util.Stack)
def breadthFirstSearch(problem):
"""Search the shallowest nodes in the search tree first."""
#Use a Queue in order to perform a Breadth First Search
return baseSearchFunction(problem, util.Queue)
def uniformCostSearch(problem):
"""Search the node of least total cost first."""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,542 @@
# searchAgents.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
This file contains all of the agents that can be selected to control Pacman. To
select an agent, use the '-p' option when running pacman.py. Arguments can be
passed to your agent using '-a'. For example, to load a SearchAgent that uses
depth first search (dfs), run the following command:
> python pacman.py -p SearchAgent -a fn=depthFirstSearch
Commands to invoke other search strategies can be found in the project
description.
Please only change the parts of the file you are asked to. Look for the lines
that say
"*** YOUR CODE HERE ***"
The parts you fill in start about 3/4 of the way down. Follow the project
description for details.
Good luck and happy searching!
"""
from game import Directions
from game import Agent
from game import Actions
import util
import time
import search
class GoWestAgent(Agent):
"An agent that goes West until it can't."
def getAction(self, state):
"The agent receives a GameState (defined in pacman.py)."
if Directions.WEST in state.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP
#######################################################
# This portion is written for you, but will only work #
# after you fill in parts of search.py #
#######################################################
class SearchAgent(Agent):
"""
This very general search agent finds a path using a supplied search
algorithm for a supplied search problem, then returns actions to follow that
path.
As a default, this agent runs DFS on a PositionSearchProblem to find
location (1,1)
Options for fn include:
depthFirstSearch or dfs
breadthFirstSearch or bfs
Note: You should NOT change any code in SearchAgent
"""
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the search function from the name and heuristic
if fn not in dir(search):
raise AttributeError(fn + ' is not a search function in search.py.')
func = getattr(search, fn)
if 'heuristic' not in func.__code__.co_varnames:
print('[SearchAgent] using function ' + fn)
self.searchFunction = func
else:
if heuristic in globals().keys():
heur = globals()[heuristic]
elif heuristic in dir(search):
heur = getattr(search, heuristic)
else:
raise AttributeError(heuristic + ' is not a function in searchAgents.py or search.py.')
print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic))
# Note: this bit of Python trickery combines the search algorithm and the heuristic
self.searchFunction = lambda x: func(x, heuristic=heur)
# Get the search problem type from the name
if prob not in globals().keys() or not prob.endswith('Problem'):
raise AttributeError(prob + ' is not a search problem type in SearchAgents.py.')
self.searchType = globals()[prob]
print('[SearchAgent] using problem type ' + prob)
def registerInitialState(self, state):
"""
This is the first time that the agent sees the layout of the game
board. Here, we choose a path to the goal. In this phase, the agent
should compute the path to the goal and store it in a local variable.
All of the work is done in this method!
state: a GameState object (pacman.py)
"""
if self.searchFunction == None: raise Exception("No search function provided for SearchAgent")
starttime = time.time()
problem = self.searchType(state) # Makes a new search problem
self.actions = self.searchFunction(problem) # Find a path
totalCost = problem.getCostOfActions(self.actions)
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded)
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
if i < len(self.actions):
return self.actions[i]
else:
return Directions.STOP
class PositionSearchProblem(search.SearchProblem):
"""
A search problem defines the state space, start state, goal test, successor
function and cost function. This search problem can be used to find paths
to a particular point on the pacman board.
The state space consists of (x,y) positions in a pacman game.
Note: this search problem is fully specified; you should NOT change it.
"""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
"""
Stores the start and goal.
gameState: A GameState object (pacman.py)
costFn: A function from a search state (tuple) to a non-negative number
goal: A position in the gameState
"""
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self.goal = goal
self.costFn = costFn
self.visualize = visualize
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
print('Warning: this does not look like a regular search maze')
# For display purposes
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def getStartState(self):
return self.startState
def isGoalState(self, state):
isGoal = state == self.goal
# For display purposes only
if isGoal and self.visualize:
self._visitedlist.append(state)
import __main__
if '_display' in dir(__main__):
if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable
__main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable
return isGoal
def getSuccessors(self, state):
"""
Returns successor states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
successors = []
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
x,y = state
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextState = (nextx, nexty)
cost = self.costFn(nextState)
successors.append( ( nextState, action, cost) )
# Bookkeeping for display purposes
self._expanded += 1 # DO NOT CHANGE
if state not in self._visited:
self._visited[state] = True
self._visitedlist.append(state)
return successors
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999.
"""
if actions == None: return 999999
x,y= self.getStartState()
cost = 0
for action in actions:
# Check figure out the next state and see whether its' legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
cost += self.costFn((x,y))
return cost
class StayEastSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the West side of the board.
The cost function for stepping into a position (x,y) is 1/2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: .5 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False)
class StayWestSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the East side of the board.
The cost function for stepping into a position (x,y) is 2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: 2 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn)
def manhattanHeuristic(position, problem, info={}):
"The Manhattan distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
def euclideanHeuristic(position, problem, info={}):
"The Euclidean distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
#####################################################
# This portion is incomplete. Time to write code! #
#####################################################
class CornersProblem(search.SearchProblem):
"""
This search problem finds paths through all four corners of a layout.
You must select a suitable state space and successor function
"""
def __init__(self, startingGameState):
"""
Stores the walls, pacman's starting position and corners.
"""
self.walls = startingGameState.getWalls()
self.startingPosition = startingGameState.getPacmanPosition()
top, right = self.walls.height-2, self.walls.width-2
self.corners = ((1,1), (1,top), (right, 1), (right, top))
for corner in self.corners:
if not startingGameState.hasFood(*corner):
print('Warning: no food in corner ' + str(corner))
self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded
# Please add any code here which you would like to use
# in initializing the problem
"*** YOUR CODE HERE ***"
def getStartState(self):
"""
Returns the start state (in your state space, not the full Pacman state
space)
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def isGoalState(self, state):
"""
Returns whether this search state is a goal state of the problem.
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def getSuccessors(self, state):
"""
Returns successor states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost'
is the incremental cost of expanding to that successor
"""
successors = []
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
# Add a successor state to the successor list if the action is legal
# Here's a code snippet for figuring out whether a new position hits a wall:
# x,y = currentPosition
# dx, dy = Actions.directionToVector(action)
# nextx, nexty = int(x + dx), int(y + dy)
# hitsWall = self.walls[nextx][nexty]
"*** YOUR CODE HERE ***"
self._expanded += 1 # DO NOT CHANGE
return successors
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999. This is implemented for you.
"""
if actions == None: return 999999
x,y= self.startingPosition
for action in actions:
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
return len(actions)
def cornersHeuristic(state, problem):
"""
A heuristic for the CornersProblem that you defined.
state: The current search state
(a data structure you chose in your search problem)
problem: The CornersProblem instance for this layout.
This function should always return a number that is a lower bound on the
shortest path from the state to a goal of the problem; i.e. it should be
admissible (as well as consistent).
"""
corners = problem.corners # These are the corner coordinates
walls = problem.walls # These are the walls of the maze, as a Grid (game.py)
"*** YOUR CODE HERE ***"
return 0 # Default to trivial solution
class AStarCornersAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic)
self.searchType = CornersProblem
class FoodSearchProblem:
"""
A search problem associated with finding the a path that collects all of the
food (dots) in a Pacman game.
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
"""
def __init__(self, startingGameState):
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood())
self.walls = startingGameState.getWalls()
self.startingGameState = startingGameState
self._expanded = 0 # DO NOT CHANGE
self.heuristicInfo = {} # A dictionary for the heuristic to store information
def getStartState(self):
return self.start
def isGoalState(self, state):
return state[1].count() == 0
def getSuccessors(self, state):
"Returns successor states, the actions they require, and a cost of 1."
successors = []
self._expanded += 1 # DO NOT CHANGE
for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
x,y = state[0]
dx, dy = Actions.directionToVector(direction)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextFood = state[1].copy()
nextFood[nextx][nexty] = False
successors.append( ( ((nextx, nexty), nextFood), direction, 1) )
return successors
def getCostOfActions(self, actions):
"""Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999"""
x,y= self.getStartState()[0]
cost = 0
for action in actions:
# figure out the next state and see whether it's legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]:
return 999999
cost += 1
return cost
class AStarFoodSearchAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic)
self.searchType = FoodSearchProblem
def foodHeuristic(state, problem):
"""
Your heuristic for the FoodSearchProblem goes here.
This heuristic must be consistent to ensure correctness. First, try to come
up with an admissible heuristic; almost all admissible heuristics will be
consistent as well.
If using A* ever finds a solution that is worse uniform cost search finds,
your heuristic is *not* consistent, and probably not admissible! On the
other hand, inadmissible or inconsistent heuristics may find optimal
solutions, so be careful.
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
(see game.py) of either True or False. You can call foodGrid.asList() to get
a list of food coordinates instead.
If you want access to info like walls, capsules, etc., you can query the
problem. For example, problem.walls gives you a Grid of where the walls
are.
If you want to *store* information to be reused in other calls to the
heuristic, there is a dictionary called problem.heuristicInfo that you can
use. For example, if you only want to count the walls once and store that
value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
Subsequent calls to this heuristic can access
problem.heuristicInfo['wallCount']
"""
position, foodGrid = state
"*** YOUR CODE HERE ***"
return 0
class ClosestDotSearchAgent(SearchAgent):
"Search for all food using a sequence of searches"
def registerInitialState(self, state):
self.actions = []
currentState = state
while(currentState.getFood().count() > 0):
nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece
self.actions += nextPathSegment
for action in nextPathSegment:
legal = currentState.getLegalActions()
if action not in legal:
t = (str(action), str(currentState))
raise Exception('findPathToClosestDot returned an illegal move: %s!\n%s' % t)
currentState = currentState.generateSuccessor(0, action)
self.actionIndex = 0
print('Path found with cost %d.' % len(self.actions))
def findPathToClosestDot(self, gameState):
"""
Returns a path (a list of actions) to the closest dot, starting from
gameState.
"""
# Here are some useful elements of the startState
startPosition = gameState.getPacmanPosition()
food = gameState.getFood()
walls = gameState.getWalls()
problem = AnyFoodSearchProblem(gameState)
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
class AnyFoodSearchProblem(PositionSearchProblem):
"""
A search problem for finding a path to any food.
This search problem is just like the PositionSearchProblem, but has a
different goal test, which you need to fill in below. The state space and
successor function do not need to be changed.
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
inherits the methods of the PositionSearchProblem.
You can use this search problem to help you fill in the findPathToClosestDot
method.
"""
def __init__(self, gameState):
"Stores information from the gameState. You don't need to change this."
# Store the food for later reference
self.food = gameState.getFood()
# Store info for the PositionSearchProblem (no need to change this)
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
self.costFn = lambda x: 1
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def isGoalState(self, state):
"""
The state is Pacman's position. Fill this in with a goal test that will
complete the problem definition.
"""
x,y = state
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def mazeDistance(point1, point2, gameState):
"""
Returns the maze distance between any two points, using the search functions
you have already built. The gameState can be any game state -- Pacman's
position in that state is ignored.
Example usage: mazeDistance( (2,4), (5,6), gameState)
This might be a useful helper function for your ApproximateSearchAgent.
"""
x1, y1 = point1
x2, y2 = point2
walls = gameState.getWalls()
assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False)
return len(search.bfs(prob))

View File

@ -0,0 +1,823 @@
# searchTestClasses.py
# --------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import sys
import re
import testClasses
import textwrap
# import project specific code
import layout
import pacman
from search import SearchProblem
# helper function for printing solutions in solution files
def wrap_solution(solution):
if type(solution) == type([]):
return '\n'.join(textwrap.wrap(' '.join(solution)))
else:
return str(solution)
def followAction(state, action, problem):
for successor1, action1, cost1 in problem.getSuccessors(state):
if action == action1: return successor1
return None
def followPath(path, problem):
state = problem.getStartState()
states = [state]
for action in path:
state = followAction(state, action, problem)
states.append(state)
return states
def checkSolution(problem, path):
state = problem.getStartState()
for action in path:
state = followAction(state, action, problem)
return problem.isGoalState(state)
# Search problem on a plain graph
class GraphSearch(SearchProblem):
# Read in the state graph; define start/end states, edges and costs
def __init__(self, graph_text):
self.expanded_states = []
lines = graph_text.split('\n')
r = re.match('start_state:(.*)', lines[0])
if r == None:
print("Broken graph:")
print('"""%s"""' % graph_text)
raise Exception("GraphSearch graph specification start_state not found or incorrect on line 0")
self.start_state = r.group(1).strip()
r = re.match('goal_states:(.*)', lines[1])
if r == None:
print("Broken graph:")
print('"""%s"""' % graph_text)
raise Exception("GraphSearch graph specification goal_states not found or incorrect on line 1")
goals = r.group(1).split()
self.goals = [str.strip(g) for g in goals]
self.successors = {}
all_states = set()
self.orderedSuccessorTuples = []
for l in lines[2:]:
if len(l.split()) == 3:
start, action, next_state = l.split()
cost = 1
elif len(l.split()) == 4:
start, action, next_state, cost = l.split()
else:
print("Broken graph:")
print('"""%s"""' % graph_text)
raise Exception("Invalid line in GraphSearch graph specification on line:" + l)
cost = float(cost)
self.orderedSuccessorTuples.append((start, action, next_state, cost))
all_states.add(start)
all_states.add(next_state)
if start not in self.successors:
self.successors[start] = []
self.successors[start].append((next_state, action, cost))
for s in all_states:
if s not in self.successors:
self.successors[s] = []
# Get start state
def getStartState(self):
return self.start_state
# Check if a state is a goal state
def isGoalState(self, state):
return state in self.goals
# Get all successors of a state
def getSuccessors(self, state):
self.expanded_states.append(state)
return list(self.successors[state])
# Calculate total cost of a sequence of actions
def getCostOfActions(self, actions):
total_cost = 0
state = self.start_state
for a in actions:
successors = self.successors[state]
match = False
for (next_state, action, cost) in successors:
if a == action:
state = next_state
total_cost += cost
match = True
if not match:
print('invalid action sequence')
sys.exit(1)
return total_cost
# Return a list of all states on which 'getSuccessors' was called
def getExpandedStates(self):
return self.expanded_states
def __str__(self):
print(self.successors)
edges = ["%s %s %s %s" % t for t in self.orderedSuccessorTuples]
return \
"""start_state: %s
goal_states: %s
%s""" % (self.start_state, " ".join(self.goals), "\n".join(edges))
def parseHeuristic(heuristicText):
heuristic = {}
for line in heuristicText.split('\n'):
tokens = line.split()
if len(tokens) != 2:
print("Broken heuristic:")
print('"""%s"""' % heuristicText)
raise Exception("GraphSearch heuristic specification broken at tokens:" + str(tokens))
state, h = tokens
heuristic[state] = float(h)
def graphHeuristic(state, problem=None):
if state in heuristic:
return heuristic[state]
else:
import pprint
pp = pprint.PrettyPrinter(indent=4)
print("Heuristic:")
pp.pprint(heuristic)
raise Exception("Graph heuristic called with invalid state: " + str(state))
return graphHeuristic
class GraphSearchTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(GraphSearchTest, self).__init__(question, testDict)
self.graph_text = testDict['graph']
self.alg = testDict['algorithm']
self.diagram = testDict['diagram']
self.exactExpansionOrder = testDict.get('exactExpansionOrder', 'True').lower() == "true"
if 'heuristic' in testDict:
self.heuristic = parseHeuristic(testDict['heuristic'])
else:
self.heuristic = None
# Note that the return type of this function is a tripple:
# (solution, expanded states, error message)
def getSolInfo(self, search):
alg = getattr(search, self.alg)
problem = GraphSearch(self.graph_text)
if self.heuristic != None:
solution = alg(problem, self.heuristic)
else:
solution = alg(problem)
if type(solution) != type([]):
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
return solution, problem.getExpandedStates(), None
# Run student code. If an error message is returned, print error and return false.
# If a good solution is returned, printn the solution and return true; otherwise,
# print both the correct and student's solution and return false.
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
gold_expanded_states = [str.split(solutionDict['expanded_states']), str.split(solutionDict['rev_expanded_states'])]
solution, expanded_states, error = self.getSolInfo(search)
if error != None:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\t%s' % error)
return False
if solution in gold_solution and (not self.exactExpansionOrder or expanded_states in gold_expanded_states):
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tsolution:\t\t%s' % solution)
grades.addMessage('\texpanded_states:\t%s' % expanded_states)
return True
else:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tgraph:')
for line in self.diagram.split('\n'):
grades.addMessage('\t %s' % (line,))
grades.addMessage('\tstudent solution:\t\t%s' % solution)
grades.addMessage('\tstudent expanded_states:\t%s' % expanded_states)
grades.addMessage('')
grades.addMessage('\tcorrect solution:\t\t%s' % gold_solution[0])
grades.addMessage('\tcorrect expanded_states:\t%s' % gold_expanded_states[0])
grades.addMessage('\tcorrect rev_solution:\t\t%s' % gold_solution[1])
grades.addMessage('\tcorrect rev_expanded_states:\t%s' % gold_expanded_states[1])
return False
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# This solution is designed to support both right-to-left\n')
handle.write('# and left-to-right implementations.\n')
# write forward solution
solution, expanded_states, error = self.getSolInfo(search)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('solution: "%s"\n' % ' '.join(solution))
handle.write('expanded_states: "%s"\n' % ' '.join(expanded_states))
# reverse and write backwards solution
search.REVERSE_PUSH = not search.REVERSE_PUSH
solution, expanded_states, error = self.getSolInfo(search)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('rev_solution: "%s"\n' % ' '.join(solution))
handle.write('rev_expanded_states: "%s"\n' % ' '.join(expanded_states))
# clean up
search.REVERSE_PUSH = not search.REVERSE_PUSH
handle.close()
return True
class PacmanSearchTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(PacmanSearchTest, self).__init__(question, testDict)
self.layout_text = testDict['layout']
self.alg = testDict['algorithm']
self.layoutName = testDict['layoutName']
# TODO: sensible to have defaults like this?
self.leewayFactor = float(testDict.get('leewayFactor', '1'))
self.costFn = eval(testDict.get('costFn', 'None'))
self.searchProblemClassName = testDict.get('searchProblemClass', 'PositionSearchProblem')
self.heuristicName = testDict.get('heuristic', None)
def getSolInfo(self, search, searchAgents):
alg = getattr(search, self.alg)
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problemOptions = {}
if self.costFn != None:
problemOptions['costFn'] = self.costFn
problem = problemClass(start_state, **problemOptions)
heuristic = getattr(searchAgents, self.heuristicName) if self.heuristicName != None else None
if heuristic != None:
solution = alg(problem, heuristic)
else:
solution = alg(problem)
if type(solution) != type([]):
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
from game import Directions
dirs = Directions.LEFT.keys()
if [el in dirs for el in solution].count(False) != 0:
return None, None, 'Output of %s must be a list of actions from game.Directions' % self.alg
expanded = problem._expanded
return solution, expanded, None
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
gold_expanded = max(int(solutionDict['expanded_nodes']), int(solutionDict['rev_expanded_nodes']))
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('%s' % error)
return False
# FIXME: do we want to standardize test output format?
if solution not in gold_solution:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Solution not correct.')
grades.addMessage('\tstudent solution length: %s' % len(solution))
grades.addMessage('\tstudent solution:\n%s' % wrap_solution(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length: %s' % len(gold_solution[0]))
grades.addMessage('\tcorrect (reversed) solution length: %s' % len(gold_solution[1]))
grades.addMessage('\tcorrect solution:\n%s' % wrap_solution(gold_solution[0]))
grades.addMessage('\tcorrect (reversed) solution:\n%s' % wrap_solution(gold_solution[1]))
return False
if expanded > self.leewayFactor * gold_expanded and expanded > gold_expanded + 1:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Too many node expanded; are you expanding nodes twice?')
grades.addMessage('\tstudent nodes expanded: %s' % expanded)
grades.addMessage('')
grades.addMessage('\tcorrect nodes expanded: %s (leewayFactor %s)' % (gold_expanded, self.leewayFactor))
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length: %s' % len(solution))
grades.addMessage('\tnodes expanded:\t\t%s' % expanded)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# This solution is designed to support both right-to-left\n')
handle.write('# and left-to-right implementations.\n')
handle.write('# Number of nodes expanded must be with a factor of %s of the numbers below.\n' % self.leewayFactor)
# write forward solution
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('solution: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('expanded_nodes: "%s"\n' % expanded)
# write backward solution
search.REVERSE_PUSH = not search.REVERSE_PUSH
solution, expanded, error = self.getSolInfo(search, searchAgents)
if error != None: raise Exception("Error in solution code: %s" % error)
handle.write('rev_solution: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('rev_expanded_nodes: "%s"\n' % expanded)
# clean up
search.REVERSE_PUSH = not search.REVERSE_PUSH
handle.close()
return True
from game import Actions
def getStatesFromPath(start, path):
"Returns the list of states visited along the path"
vis = [start]
curr = start
for a in path:
x,y = curr
dx, dy = Actions.directionToVector(a)
curr = (int(x + dx), int(y + dy))
vis.append(curr)
return vis
class CornerProblemTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerProblemTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, search, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problem = searchAgents.CornersProblem(gameState)
path = search.bfs(problem)
gameState = pacman.GameState()
gameState.initialize(lay, 0)
visited = getStatesFromPath(gameState.getPacmanPosition(), path)
top, right = gameState.getWalls().height-2, gameState.getWalls().width-2
missedCorners = [p for p in ((1,1), (1,top), (right, 1), (right, top)) if p not in visited]
return path, missedCorners
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_length = int(solutionDict['solution_length'])
solution, missedCorners = self.solution(search, searchAgents)
if type(solution) != type([]):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('The result must be a list. (Instead, it is %s)' % type(solution))
return False
if len(missedCorners) != 0:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Corners missed: %s' % missedCorners)
return False
if len(solution) != gold_length:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Optimal solution not found.')
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
path, _ = self.solution(search, searchAgents)
length = len(path)
print("Problem solved")
handle.write('solution_length: "%s"\n' % length)
handle.close()
# template = """class: "HeuristicTest"
#
# heuristic: "foodHeuristic"
# searchProblemClass: "FoodSearchProblem"
# layoutName: "Test %s"
# layout: \"\"\"
# %s
# \"\"\"
# """
#
# for i, (_, _, l) in enumerate(doneTests + foodTests):
# f = open("food_heuristic_%s.test" % (i+1), "w")
# f.write(template % (i+1, "\n".join(l)))
# f.close()
class HeuristicTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(HeuristicTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.searchProblemClassName = testDict['searchProblemClass']
self.heuristicName = testDict['heuristic']
def setupProblem(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problem = problemClass(gameState)
state = problem.getStartState()
heuristic = getattr(searchAgents, self.heuristicName)
return problem, state, heuristic
def checkHeuristic(self, heuristic, problem, state, solutionCost):
h0 = heuristic(state, problem)
if solutionCost == 0:
if h0 == 0:
return True, ''
else:
return False, 'Heuristic failed H(goal) == 0 test'
if h0 < 0:
return False, 'Heuristic failed H >= 0 test'
if not h0 > 0:
return False, 'Heuristic failed non-triviality test'
if not h0 <= solutionCost:
return False, 'Heuristic failed admissibility test'
for succ, action, stepCost in problem.getSuccessors(state):
h1 = heuristic(succ, problem)
if h1 < 0: return False, 'Heuristic failed H >= 0 test'
if h0 - h1 > stepCost: return False, 'Heuristic failed consistency test'
return True, ''
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
solutionCost = int(solutionDict['solution_cost'])
problem, state, heuristic = self.setupProblem(searchAgents)
passed, message = self.checkHeuristic(heuristic, problem, state, solutionCost)
if not passed:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('%s' % message)
return False
else:
grades.addMessage('PASS: %s' % self.path)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName, self.heuristicName)
print(self.layoutText)
problem, _, heuristic = self.setupProblem(searchAgents)
path = search.astar(problem, heuristic)
cost = problem.getCostOfActions(path)
print("Problem solved")
handle.write('solution_cost: "%s"\n' % cost)
handle.close()
return True
class HeuristicGrade(testClasses.TestCase):
def __init__(self, question, testDict):
super(HeuristicGrade, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
self.searchProblemClassName = testDict['searchProblemClass']
self.heuristicName = testDict['heuristic']
self.basePoints = int(testDict['basePoints'])
self.thresholds = [int(t) for t in testDict['gradingThresholds'].split()]
def setupProblem(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
problemClass = getattr(searchAgents, self.searchProblemClassName)
problem = problemClass(gameState)
state = problem.getStartState()
heuristic = getattr(searchAgents, self.heuristicName)
return problem, state, heuristic
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
problem, _, heuristic = self.setupProblem(searchAgents)
path = search.astar(problem, heuristic)
expanded = problem._expanded
if not checkSolution(problem, path):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tReturned path is not a solution.')
grades.addMessage('\tpath returned by astar: %s' % expanded)
return False
grades.addPoints(self.basePoints)
points = 0
for threshold in self.thresholds:
if expanded <= threshold:
points += 1
grades.addPoints(points)
if points >= len(self.thresholds):
grades.addMessage('PASS: %s' % self.path)
else:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\texpanded nodes: %s' % expanded)
grades.addMessage('\tthresholds: %s' % self.thresholds)
return True
def writeSolution(self, moduleDict, filePath):
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
handle.write('# File intentionally blank.\n')
handle.close()
return True
# template = """class: "ClosestDotTest"
#
# layoutName: "Test %s"
# layout: \"\"\"
# %s
# \"\"\"
# """
#
# for i, (_, _, l) in enumerate(foodTests):
# f = open("closest_dot_%s.test" % (i+1), "w")
# f.write(template % (i+1, "\n".join(l)))
# f.close()
class ClosestDotTest(testClasses.TestCase):
def __init__(self, question, testDict):
super(ClosestDotTest, self).__init__(question, testDict)
self.layoutText = testDict['layout']
self.layoutName = testDict['layoutName']
def solution(self, searchAgents):
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
gameState = pacman.GameState()
gameState.initialize(lay, 0)
path = searchAgents.ClosestDotSearchAgent().findPathToClosestDot(gameState)
return path
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
gold_length = int(solutionDict['solution_length'])
solution = self.solution(searchAgents)
if type(solution) != type([]):
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('\tThe result must be a list. (Instead, it is %s)' % type(solution))
return False
if len(solution) != gold_length:
grades.addMessage('FAIL: %s' % self.path)
grades.addMessage('Closest dot not found.')
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
grades.addMessage('')
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
return False
grades.addMessage('PASS: %s' % self.path)
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# open file and write comments
handle = open(filePath, 'w')
handle.write('# This is the solution file for %s.\n' % self.path)
print("Solving problem", self.layoutName)
print(self.layoutText)
length = len(self.solution(searchAgents))
print("Problem solved")
handle.write('solution_length: "%s"\n' % length)
handle.close()
return True
class CornerHeuristicSanity(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerHeuristicSanity, self).__init__(question, testDict)
self.layout_text = testDict['layout']
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
game_state = pacman.GameState()
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
game_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(game_state)
start_state = problem.getStartState()
h0 = searchAgents.cornersHeuristic(start_state, problem)
succs = problem.getSuccessors(start_state)
# cornerConsistencyA
for succ in succs:
h1 = searchAgents.cornersHeuristic(succ[0], problem)
if h0 - h1 > 1:
grades.addMessage('FAIL: inconsistent heuristic')
return False
heuristic_cost = searchAgents.cornersHeuristic(start_state, problem)
true_cost = float(solutionDict['cost'])
# cornerNontrivial
if heuristic_cost == 0:
grades.addMessage('FAIL: must use non-trivial heuristic')
return False
# cornerAdmissible
if heuristic_cost > true_cost:
grades.addMessage('FAIL: Inadmissible heuristic')
return False
path = solutionDict['path'].split()
states = followPath(path, problem)
heuristics = []
for state in states:
heuristics.append(searchAgents.cornersHeuristic(state, problem))
for i in range(0, len(heuristics) - 1):
h0 = heuristics[i]
h1 = heuristics[i+1]
# cornerConsistencyB
if h0 - h1 > 1:
grades.addMessage('FAIL: inconsistent heuristic')
return False
# cornerPosH
if h0 < 0 or h1 <0:
grades.addMessage('FAIL: non-positive heuristic')
return False
# cornerGoalH
if heuristics[len(heuristics) - 1] != 0:
grades.addMessage('FAIL: heuristic non-zero at goal')
return False
grades.addMessage('PASS: heuristic value less than true cost at start state')
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# write comment
handle = open(filePath, 'w')
handle.write('# In order for a heuristic to be admissible, the value\n')
handle.write('# of the heuristic must be less at each state than the\n')
handle.write('# true cost of the optimal path from that state to a goal.\n')
# solve problem and write solution
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(start_state)
solution = search.astar(problem, searchAgents.cornersHeuristic)
handle.write('cost: "%d"\n' % len(solution))
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
handle.close()
return True
class CornerHeuristicPacman(testClasses.TestCase):
def __init__(self, question, testDict):
super(CornerHeuristicPacman, self).__init__(question, testDict)
self.layout_text = testDict['layout']
def execute(self, grades, moduleDict, solutionDict):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
total = 0
true_cost = float(solutionDict['cost'])
thresholds = [int(x) for x in solutionDict['thresholds'].split()]
game_state = pacman.GameState()
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
game_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(game_state)
start_state = problem.getStartState()
if searchAgents.cornersHeuristic(start_state, problem) > true_cost:
grades.addMessage('FAIL: Inadmissible heuristic')
return False
path = search.astar(problem, searchAgents.cornersHeuristic)
print("path:", path)
print("path length:", len(path))
cost = problem.getCostOfActions(path)
if cost > true_cost:
grades.addMessage('FAIL: Inconsistent heuristic')
return False
expanded = problem._expanded
points = 0
for threshold in thresholds:
if expanded <= threshold:
points += 1
grades.addPoints(points)
if points >= len(thresholds):
grades.addMessage('PASS: Heuristic resulted in expansion of %d nodes' % expanded)
else:
grades.addMessage('FAIL: Heuristic resulted in expansion of %d nodes' % expanded)
return True
def writeSolution(self, moduleDict, filePath):
search = moduleDict['search']
searchAgents = moduleDict['searchAgents']
# write comment
handle = open(filePath, 'w')
handle.write('# This solution file specifies the length of the optimal path\n')
handle.write('# as well as the thresholds on number of nodes expanded to be\n')
handle.write('# used in scoring.\n')
# solve problem and write solution
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
start_state = pacman.GameState()
start_state.initialize(lay, 0)
problem = searchAgents.CornersProblem(start_state)
solution = search.astar(problem, searchAgents.cornersHeuristic)
handle.write('cost: "%d"\n' % len(solution))
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
handle.write('thresholds: "2000 1600 1200"\n')
handle.close()
return True

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,206 @@
# testClasses.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# import modules from python standard library
import inspect
import re
import sys
# Class which models a question in a project. Note that questions have a
# maximum number of points they are worth, and are composed of a series of
# test cases
class Question(object):
def raiseNotDefined(self):
print('Method not implemented: %s' % inspect.stack()[1][3])
sys.exit(1)
def __init__(self, questionDict, display):
self.maxPoints = int(questionDict['max_points'])
self.testCases = []
self.display = display
def getDisplay(self):
return self.display
def getMaxPoints(self):
return self.maxPoints
# Note that 'thunk' must be a function which accepts a single argument,
# namely a 'grading' object
def addTestCase(self, testCase, thunk):
self.testCases.append((testCase, thunk))
def execute(self, grades):
self.raiseNotDefined()
# Question in which all test cases must be passed in order to receive credit
class PassAllTestsQuestion(Question):
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
testsFailed = False
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
testsFailed = True
if testsFailed:
grades.fail("Tests failed.")
else:
grades.assignFullCredit()
class ExtraCreditPassAllTestsQuestion(Question):
def __init__(self, questionDict, display):
Question.__init__(self, questionDict, display)
self.extraPoints = int(questionDict['extra_points'])
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
testsFailed = False
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
testsFailed = True
if testsFailed:
grades.fail("Tests failed.")
else:
grades.assignFullCredit()
grades.addPoints(self.extraPoints)
# Question in which predict credit is given for test cases with a ``points'' property.
# All other tests are mandatory and must be passed.
class HackedPartialCreditQuestion(Question):
def execute(self, grades):
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
grades.assignZeroCredit()
points = 0
passed = True
for testCase, f in self.testCases:
testResult = f(grades)
if "points" in testCase.testDict:
if testResult: points += float(testCase.testDict["points"])
else:
passed = passed and testResult
## FIXME: Below terrible hack to match q3's logic
if int(points) == self.maxPoints and not passed:
grades.assignZeroCredit()
else:
grades.addPoints(int(points))
class Q6PartialCreditQuestion(Question):
"""Fails any test which returns False, otherwise doesn't effect the grades object.
Partial credit tests will add the required points."""
def execute(self, grades):
grades.assignZeroCredit()
results = []
for _, f in self.testCases:
results.append(f(grades))
if False in results:
grades.assignZeroCredit()
class PartialCreditQuestion(Question):
"""Fails any test which returns False, otherwise doesn't effect the grades object.
Partial credit tests will add the required points."""
def execute(self, grades):
grades.assignZeroCredit()
for _, f in self.testCases:
if not f(grades):
grades.assignZeroCredit()
grades.fail("Tests failed.")
return False
class NumberPassedQuestion(Question):
"""Grade is the number of test cases passed."""
def execute(self, grades):
grades.addPoints([f(grades) for _, f in self.testCases].count(True))
# Template modeling a generic test case
class TestCase(object):
def raiseNotDefined(self):
print('Method not implemented: %s' % inspect.stack()[1][3])
sys.exit(1)
def getPath(self):
return self.path
def __init__(self, question, testDict):
self.question = question
self.testDict = testDict
self.path = testDict['path']
self.messages = []
def __str__(self):
self.raiseNotDefined()
def execute(self, grades, moduleDict, solutionDict):
self.raiseNotDefined()
def writeSolution(self, moduleDict, filePath):
self.raiseNotDefined()
return True
# Tests should call the following messages for grading
# to ensure a uniform format for test output.
#
# TODO: this is hairy, but we need to fix grading.py's interface
# to get a nice hierarchical project - question - test structure,
# then these should be moved into Question proper.
def testPass(self, grades):
grades.addMessage('PASS: %s' % (self.path,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return True
def testFail(self, grades):
grades.addMessage('FAIL: %s' % (self.path,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return False
# This should really be question level?
#
def testPartial(self, grades, points, maxPoints):
grades.addPoints(points)
extraCredit = max(0, points - maxPoints)
regularCredit = points - extraCredit
grades.addMessage('%s: %s (%s of %s points)' % ("PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints))
if extraCredit > 0:
grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,))
for line in self.messages:
grades.addMessage(' %s' % (line,))
return True
def addMessage(self, message):
self.messages.extend(message.split('\n'))

View File

@ -0,0 +1,85 @@
# testParser.py
# -------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import re
import sys
class TestParser(object):
def __init__(self, path):
# save the path to the test file
self.path = path
def removeComments(self, rawlines):
# remove any portion of a line following a '#' symbol
fixed_lines = []
for l in rawlines:
idx = l.find('#')
if idx == -1:
fixed_lines.append(l)
else:
fixed_lines.append(l[0:idx])
return '\n'.join(fixed_lines)
def parse(self):
# read in the test case and remove comments
test = {}
with open(self.path) as handle:
raw_lines = handle.read().split('\n')
test_text = self.removeComments(raw_lines)
test['__raw_lines__'] = raw_lines
test['path'] = self.path
test['__emit__'] = []
lines = test_text.split('\n')
i = 0
# read a property in each loop cycle
while(i < len(lines)):
# skip blank lines
if re.match('\A\s*\Z', lines[i]):
test['__emit__'].append(("raw", raw_lines[i]))
i += 1
continue
m = re.match('\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i])
if m:
test[m.group(1)] = m.group(2)
test['__emit__'].append(("oneline", m.group(1)))
i += 1
continue
m = re.match('\A([^"]*?):\s*"""\s*\Z', lines[i])
if m:
msg = []
i += 1
while(not re.match('\A\s*"""\s*\Z', lines[i])):
msg.append(raw_lines[i])
i += 1
test[m.group(1)] = '\n'.join(msg)
test['__emit__'].append(("multiline", m.group(1)))
i += 1
continue
print('error parsing test file: %s' % self.path)
sys.exit(1)
return test
def emitTestDict(testDict, handle):
for kind, data in testDict['__emit__']:
if kind == "raw":
handle.write(data + "\n")
elif kind == "oneline":
handle.write('%s: "%s"\n' % (data, testDict[data]))
elif kind == "multiline":
handle.write('%s: """\n%s\n"""\n' % (data, testDict[data]))
else:
raise Exception("Bad __emit__")

View File

@ -0,0 +1 @@
order: "q1 q2 q3 q4 q5 q6 q7 q8"

View File

@ -0,0 +1,2 @@
max_points: "3"
class: "PassAllTestsQuestion"

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q1/graph_backtrack.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "1:A->C 0:C->G"
expanded_states: "A D C"
rev_solution: "1:A->C 0:C->G"
rev_expanded_states: "A B C"

View File

@ -0,0 +1,32 @@
class: "GraphSearchTest"
algorithm: "depthFirstSearch"
diagram: """
B
^
|
*A --> C --> G
|
V
D
A is the start state, G is the goal. Arrows mark
possible state transitions. This tests whether
you extract the sequence of actions correctly even
if your search backtracks. If you fail this, your
nodes are not correctly tracking the sequences of
actions required to reach them.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
A 1:A->C C 2.0
A 2:A->D D 4.0
C 0:C->G G 8.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q1/graph_bfs_vs_dfs.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "2:A->D 0:D->G"
expanded_states: "A D"
rev_solution: "0:A->B 0:B->D 0:D->G"
rev_expanded_states: "A B D"

View File

@ -0,0 +1,30 @@
# Graph where BFS finds the optimal solution but DFS does not
class: "GraphSearchTest"
algorithm: "depthFirstSearch"
diagram: """
/-- B
| ^
| |
| *A -->[G]
| | ^
| V |
\-->D ----/
A is the start state, G is the goal. Arrows
mark possible transitions
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
A 1:A->G G 2.0
A 2:A->D D 4.0
B 0:B->D D 8.0
D 0:D->G G 16.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q1/graph_infinite.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "0:A->B 1:B->C 1:C->G"
expanded_states: "A B C"
rev_solution: "0:A->B 1:B->C 1:C->G"
rev_expanded_states: "A B C"

View File

@ -0,0 +1,30 @@
# Graph where natural action choice leads to an infinite loop
class: "GraphSearchTest"
algorithm: "depthFirstSearch"
diagram: """
B <--> C
^ /|
| / |
V / V
*A<-/ [G]
A is the start state, G is the goal. Arrows mark
possible state transitions.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
B 0:B->A A 2.0
B 1:B->C C 4.0
C 0:C->A A 8.0
C 1:C->G G 16.0
C 2:C->B B 32.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q1/graph_manypaths.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "2:A->B2 0:B2->C 0:C->D 2:D->E2 0:E2->F 0:F->G"
expanded_states: "A B2 C D E2 F"
rev_solution: "0:A->B1 0:B1->C 0:C->D 0:D->E1 0:E1->F 0:F->G"
rev_expanded_states: "A B1 C D E1 F"

View File

@ -0,0 +1,39 @@
class: "GraphSearchTest"
algorithm: "depthFirstSearch"
diagram: """
B1 E1
^ \ ^ \
/ V / V
*A --> C --> D --> F --> [G]
\ ^ \ ^
V / V /
B2 E2
A is the start state, G is the goal. Arrows mark
possible state transitions. This graph has multiple
paths to the goal, where nodes with the same state
are added to the fringe multiple times before they
are expanded.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B1 B1 1.0
A 1:A->C C 2.0
A 2:A->B2 B2 4.0
B1 0:B1->C C 8.0
B2 0:B2->C C 16.0
C 0:C->D D 32.0
D 0:D->E1 E1 64.0
D 1:D->F F 128.0
D 2:D->E2 E2 256.0
E1 0:E1->F F 512.0
E2 0:E2->F F 1024.0
F 0:F->G G 2048.0
"""

View File

@ -0,0 +1,40 @@
# This is the solution file for test_cases/q1/pacman_1.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
# Number of nodes expanded must be with a factor of 1.0 of the numbers below.
solution: """
West West West West West West West West West West West West West West
West West West West West West West West West West West West West West
West West West West West South South South South South South South
South South East East East North North North North North North North
East East South South South South South South East East North North
North North North North East East South South South South East East
North North East East East East East East East East South South South
East East East East East East East South South South South South South
South West West West West West West West West West West West West West
West West West West South West West West West West West West West West
"""
expanded_nodes: "146"
rev_solution: """
South South West West West West South South East East East East South
South West West West West South South East East East East South South
West West West West South South South East North East East East South
South South West West West West West West West North North North North
North North North North West West West West West West West North North
North East East East East South East East East North North North West
West North North West West West West West West West West West West
West West West West West West West West West West West West West West
South South South South South South South South South East East East
North North North North North North North East East South South South
South South South East East North North North North North North East
East South South South South East East North North North North East
East East East East South South West West West South South East East
East South South West West West West West West South South West West
West West West South West West West West West South South East East
East East East East East North East East East East East North North
East East East East East East North East East East East East South
South West West West South West West West West West West South South
West West West West West South West West West West West West West West
West
"""
rev_expanded_nodes: "269"

View File

@ -0,0 +1,27 @@
# This is a basic depth first search test
class: "PacmanSearchTest"
algorithm: "depthFirstSearch"
# The following specifies the layout to be used
layoutName: "mediumMaze"
layout: """
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P%
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
% %% % % %%%%%%% %% %
% %% % % % % %%%% %%%%%%%%% %% %%%%%
% %% % % % % %% %% %
% %% % % % % % %%%% %%% %%%%%% %
% % % % % % %% %%%%%%%% %
% %% % % %%%%%%%% %% %% %%%%%
% %% % %% %%%%%%%%% %% %
% %%%%%% %%%%%%% %% %%%%%% %
%%%%%% % %%%% %% % %
% %%%%%% %%%%% % %% %% %%%%%
% %%%%%% % %%%%% %% %
% %%%%%% %%%%%%%%%%% %% %% %
%%%%%%%%%% %%%%%% %
%. %%%%%%%%%%%%%%%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
"""

View File

@ -0,0 +1,2 @@
max_points: "3"
class: "PassAllTestsQuestion"

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q2/graph_backtrack.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "1:A->C 0:C->G"
expanded_states: "A B C D"
rev_solution: "1:A->C 0:C->G"
rev_expanded_states: "A D C B"

View File

@ -0,0 +1,32 @@
class: "GraphSearchTest"
algorithm: "breadthFirstSearch"
diagram: """
B
^
|
*A --> C --> G
|
V
D
A is the start state, G is the goal. Arrows mark
possible state transitions. This tests whether
you extract the sequence of actions correctly even
if your search backtracks. If you fail this, your
nodes are not correctly tracking the sequences of
actions required to reach them.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
A 1:A->C C 2.0
A 2:A->D D 4.0
C 0:C->G G 8.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q2/graph_bfs_vs_dfs.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "1:A->G"
expanded_states: "A B"
rev_solution: "1:A->G"
rev_expanded_states: "A D"

View File

@ -0,0 +1,30 @@
# Graph where BFS finds the optimal solution but DFS does not
class: "GraphSearchTest"
algorithm: "breadthFirstSearch"
diagram: """
/-- B
| ^
| |
| *A -->[G]
| | ^
| V |
\-->D ----/
A is the start state, G is the goal. Arrows
mark possible transitions
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
A 1:A->G G 2.0
A 2:A->D D 4.0
B 0:B->D D 8.0
D 0:D->G G 16.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q2/graph_infinite.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "0:A->B 1:B->C 1:C->G"
expanded_states: "A B C"
rev_solution: "0:A->B 1:B->C 1:C->G"
rev_expanded_states: "A B C"

View File

@ -0,0 +1,30 @@
# Graph where natural action choice leads to an infinite loop
class: "GraphSearchTest"
algorithm: "breadthFirstSearch"
diagram: """
B <--> C
^ /|
| / |
V / V
*A<-/ [G]
A is the start state, G is the goal. Arrows mark
possible state transitions.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B B 1.0
B 0:B->A A 2.0
B 1:B->C C 4.0
C 0:C->A A 8.0
C 1:C->G G 16.0
C 2:C->B B 32.0
"""

View File

@ -0,0 +1,7 @@
# This is the solution file for test_cases/q2/graph_manypaths.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
solution: "1:A->C 0:C->D 1:D->F 0:F->G"
expanded_states: "A B1 C B2 D E1 F E2"
rev_solution: "1:A->C 0:C->D 1:D->F 0:F->G"
rev_expanded_states: "A B2 C B1 D E2 F E1"

View File

@ -0,0 +1,39 @@
class: "GraphSearchTest"
algorithm: "breadthFirstSearch"
diagram: """
B1 E1
^ \ ^ \
/ V / V
*A --> C --> D --> F --> [G]
\ ^ \ ^
V / V /
B2 E2
A is the start state, G is the goal. Arrows mark
possible state transitions. This graph has multiple
paths to the goal, where nodes with the same state
are added to the fringe multiple times before they
are expanded.
"""
# The following section specifies the search problem and the solution.
# The graph is specified by first the set of start states, followed by
# the set of goal states, and lastly by the state transitions which are
# of the form:
# <start state> <actions> <end state> <cost>
graph: """
start_state: A
goal_states: G
A 0:A->B1 B1 1.0
A 1:A->C C 2.0
A 2:A->B2 B2 4.0
B1 0:B1->C C 8.0
B2 0:B2->C C 16.0
C 0:C->D D 32.0
D 0:D->E1 E1 64.0
D 1:D->F F 128.0
D 2:D->E2 E2 256.0
E1 0:E1->F F 512.0
E2 0:E2->F F 1024.0
F 0:F->G G 2048.0
"""

View File

@ -0,0 +1,22 @@
# This is the solution file for test_cases/q2/pacman_1.test.
# This solution is designed to support both right-to-left
# and left-to-right implementations.
# Number of nodes expanded must be with a factor of 1.0 of the numbers below.
solution: """
West West West West West West West West West South South East East
South South South West West West North West West West West South South
South East East East East East East East South South South South South
South South West West West West West West West West West West West
West West West West West West South West West West West West West West
West West
"""
expanded_nodes: "269"
rev_solution: """
West West West West West West West West West South South East East
South South South West West West North West West West West South South
South East East East East East East East South South South South South
South South West West West West West West West West West West West
West West West West West West South West West West West West West West
West West
"""
rev_expanded_nodes: "269"

Some files were not shown because too many files have changed in this diff Show More