
CS466 – SOFTWARE
PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER

1)
A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 1: INTRODUCTION - DEVELOPMENT PROCESSES, ISO
12207 AND CMMI

BY: JOSEPH MARTINAZZI

UBIQUITY OF COMPUTING

TODAY SOFTWARE HAS BECOME EMBEDDED INTO TECHNOLOGY INDIVIDUALS
USE AS A PART OF THEIR DAILY LIVES.

THIS INCLUDES APPLICATIONS ON A COMPUTER THAT AN INDIVIDUAL CAN
CHOOSE TO USE:

• USING WORD PROCESSING/SPREAD SHEET APPLICATIONS ON A COMPUTER,

• USING THE INTERNET FOR RESEARCH AND E-COMMERCE, AND

• PLAYING COMPUTER GAMES.

AS WELL AS EMBEDDED SOFTWARE IN MOST DEVICES THAT INDIVIDUALS DON’T
HAVE A CHOICE TO USE:

• USING A SMART PHONE OR MOST OTHER CONSUMER ELECTRONIC DEVICES,

• DRIVING A CAR

• FLYING ON AN AIRPLANE,

• USING ELECTRICITY OR DRINKING WATER, AND

• USING MEDICAL EQUIPMENT TO DIAGNOSE/TREAT ILLNESSES.

UBIQUITY OF COMPUTING

AS A RESULT, THERE IS A LOT OF RESPONSIBILITY ON COMPANIES AND
INDIVIDUALS THAT WORK AT THESE COMPANIES TO TAKE CONSUMER PRIVACY &
SAFETY INTO ACCOUNT WHEN DEVELOPING THESE PRODUCTS.

A WAY FOR A COMPANY TO ACHIEVE THIS GOAL IS TO ESTABLISH A WELL-DEFINED
PROCESS AND TO ENSURE ITS EMPLOYEES FOLLOW THAT PROCESS!

UNFORTUNATELY, SOFTWARE PROGRAMS HAVE BECOME MORE AND MORE COMPLEX
AND THEIR USE MAY NOT ALWAYS BE POSSIBLE TO PREDICT.

• SOFTWARE IS DEVELOPED BY PEOPLE WHO THINK SEQUENTIALLY, WHO HAVE LIMITED
DOMAIN KNOWLEDGE, AND WHO MAKE MISTAKES

• IMPOSSIBLE TO DETERMINE THE EFFECTS OF CONCURRENCY (MULTIPLE PROCESSES
AND EXTERNAL INPUTS)

• INABILITY TO VERIFY & VALIDATE SYSTEMS IN AN ACCURATE TEST ENVIRONMENT

• ACCEPTANCE OF FAULT TOLERANT SYSTEMS

UBIQUITY OF COMPUTING – IN SMART PHONES

EXAMPLE #1: SMART PHONES AND THE IMPACT THEY HAVE ON SOCIETY?

• SMARTPHONES HAVE ENABLED MANY NEW WAYS FOR PEOPLE TO CONNECT
WITH ONE ANOTHER OUTSIDE OF CONVERSATION INCLUDING:

• FACETIMING,

• TEXTING,

• TAKING AND SHARING PICTURES,

• ACCESSING EMAIL (OVER THE INTERNET), AND

• ACCESSING SOCIAL MEDIA SITES (OVER THE INTERNET).

• SMARTPHONE APPS HAVE ENDLESS USES THAT ENABLE INDIVIDUALS TO
STREAM VIDEOS, LISTEN TO MUSIC, AND EVEN GET A FAST PASS TICKET AT
DISNEYLAND.

UBIQUITY OF COMPUTING – IN SMART PHONES

EXAMPLE #1: SMART PHONES AND THE IMPACT THEY HAVE ON
SOCIETY?

• UNFORTUNATELY, SMARTPHONES HAVE CREATED MANY UNFORESEEN
ISSUES IN SOCIETY AS WELL:

• USE OF SMARTPHONES WHILE DRIVING INCREASE THE RISK OF AN ACCIDENT.

• PEOPLE USE SMARTPHONES IN INAPPROPRIATE PLACES AND THE FACT THAT
THEY HAVE CAMERAS AFFECTS OUR PRIVACY IN PUBLIC AND NON-PUBLIC
PLACES.

• RESEARCHERS ARE LEARNING AN ENORMOUS AMOUNT ABOUT OUR
BEHAVIOR FROM HOW WE USE OUR SMARTPHONE. INVASION OF PRIVACY

UBIQUITY OF COMPUTING – IN CRITICAL SYSTEMS

EXAMPLE #2: POORLY DESIGNED USER INTERFACES IN SAFETY CRITICAL
SYSTEMS

CASE STUDY #1 - ISSUES RESULTING FROM POORLY DESIGNED USER INTERFACES
RESULTED IN THE CRASH OF AMERICAN AIRLINES FLIGHT 965 NEAR CALI, COLOMBIA.

• THE PILOT INTENDED TO LOCK THE AUTOPILOT ONTO A BEACON WHILE APPROACHING
THE AIRPORT. AFTER ENTERING “R”, THE COMPUTER SYSTEM DISPLAYED 6 BEACONS
WITH “R”. NORMALLY, THE CLOSET BEACON IS DISPLAYED AT THE TOP OF THE LIST.

• IN THIS CASE THE BEACON AT THE TOP OF THE LIST WAS 100 MILES AWAY RESULTING
IN THE PLANE TURNING MORE THAN 90 DEGREES CRASHING INTO A MOUNTAIN, ALL
159 PEOPLE ON BOARD WERE KILLED.

WHY WAS THIS INCONSISTENCY NOT DISCOVERED DURING TESTING?

WAS THERE SOME LATEN ERROR THAT ONLY OCCURRED BASED ON A CERTAIN SET OF
CIRCUMSTANCES OR WAS THERE A PROCESS PROBLEM?

UBIQUITY OF COMPUTING – IN CRITICAL SYSTEMS

EXAMPLE #2: POORLY DESIGNED USER INTERFACES IN SAFETY CRITICAL
SYSTEMS

CASE STUDY #2 - ISSUES RESULTING FROM POORLY DESIGNED USER
INTERFACES RESULTED IN ASIANA AIRLINES FLIGHT 214 CRASHING IN SAN
FRANCISCO.

• THE PILOT DID NOT REALIZE THAT THE SPECIFIC AUTOPILOT MODE HE
SELECTED DISENGAGED AN AUTO-THROTTLE FEATURE RESULTING IN THE
PLANE’S SPEED DECREASING TOO RAPIDLY ON APPROACH TO THE AIRPORT.

• IN THIS CASE THE TAIL OF THE PLANE BROKE OFF KILLING 3 PASSENGERS
AND INJURING THE REST OF THE PASSENGERS.

WHY WAS THE PILOT UNAWARE OF THIS FEATURE IN THIS AIRCRAFT?

WAS THERE AN ISSUE WITH THE TRAINING MATERIAL OR ASSOCIATED FLIGHT
SIMULATOR?

UBIQUITY OF COMPUTING – IN CRITICAL SYSTEMS

EXAMPLE #3: FAILURE TO CORRECTLY ESTABLISH SAFETY AS A KEY PART OF A
PROCESS.

PEOPLE MAKE DECISIONS BASED ON FACTS BUT TEND TO ERROR ON THE SIDE OF CAUTION IN
ABSENCE OF A CONVINCING CASE FOR SAFETY.

CASE STUDY #1 - THE SPACE SHUTTLE CHALLENGER WAS DESTROYED AS A RESULT
OF A BLOW BY (BREACH IN RUBBER GASKET THAT ENABLED BURNING GAS TO IGNITE THE ROCKET
FUEL).

• NASA HAD ORIGINALLY HALTED SHUTTLE OPERATIONS UNTIL THE BLOW BY ISSUE COULD BE RESOLVED.
 HOWEVER, ONCE A SOLUTION WAS IDENTIFIED AND WENT INTO PRODUCTION, SHUTTLE LAUNCHES
WERE PERMITTED TO CONTINUE. FAILURE TO MAKE A CONVINCING CASE FOR SAFETY

• THE NIGHT BEFORE THE SHUTTLE LAUNCH WAS THE COLDEST NIGHT ON RECORD (RUBBER GETS
BRITTLE WHEN IT IS COLD). ENGINEERS ARGUED FOR A DELAY BECAUSE THEY KNEW THE COLD
WEATHER POSED A SEVERE THREAT. HOWEVER, IN THE END THE LAUNCH WENT AHEAD AS
SCHEDULED SINCE THEY COULD NOT ABSOLUTELY PROVE THAT THE SYSTEM WAS NOT SAFE UNDER
THE CURRENT CONDITIONS. FAILURE TO MAKE A CONVINCING CASE FOR SAFETY

• THE SHUTTLE EXPLODED ON TAKEOFF KILLING A SCHOOLTEACHER, A SCIENTIST FROM HUGHES
AIRCRAFT COMPANY, AND ALL THE ASTRONAUTS ON BOARD.

UBIQUITY OF COMPUTING – IN CRITICAL SYSTEMS

EXAMPLE #3: FAILURE TO CORRECTLY ESTABLISH SAFETY AS A KEY
PART OF A PROCESS.

PEOPLE MAKE DECISIONS BASED ON FACTS BUT TEND TO ERROR ON THE SIDE
OF CAUTION IN ABSENCE OF A CONVINCING CASE FOR SAFETY.

CASE STUDY #2 – THE CHERNOBYL NUCLEAR DISASTER

• WAS A RESULT OF THE PLANT OPERATORS NOT UNDERSTANDING THE
RAMIFICATIONS OF HAVING THE PLANT ONLINE FOR TWO YEARS EVEN THOUGH
THE THEY KNEW THE BACKUP SYSTEMS COULD NOT OPERATE FOR 60-75
SECONDS IN THE EVENT OF AN ELECTRICAL POWER FAILURE.

• THESE OPERATORS FELL UNDER THE TRAP OF THINKING IT WAS OK TO CONTINUE
OPERATIONS BECAUSE THEY WERE ATTEMPTING TO SOLVE THE PROBLEM.

UBIQUITY OF COMPUTING – IN CRITICAL SYSTEMS

EXAMPLE #3: FAILURE TO CORRECTLY ESTABLISH SAFETY AS A KEY PART OF A
PROCESS.

PEOPLE MAKE DECISIONS BASED ON FACTS BUT TEND TO ERROR ON THE SIDE OF CAUTION IN ABSENCE
OF A CONVINCING CASE FOR SAFETY.

CASE STUDY #3 – THE CRASHING OF 2 BOEING 800-MAX JET AIRLINERS.

UNDERSTANDING THE PROBLEM YOU ARE TRYING TO SOLVE USING SOFTWARE IS EXTREMELY
IMPORTANT PRIOR TO DESIGNING THE SOLUTION.

• THE DESIGNERS CHOSE TO REUSE AN EXISTING HARDWARE DESIGN VS. CREATING A NEW DESIGN TO
SAVE TIME AND MONEY.

• AT SOME POINT IN THE DEVELOPMENT PROCESS, THE ENGINEERS MUST HAVE REALIZED THE PLANE HAD
AN ISSUE DUE TO WEIGHT DISTRIBUTION AND DECIDED TO USE SOFTWARE TO CORRECT THE ISSUE OF
THE NOSE OF PLANE POINTING DOWN DURING TAKE-OFF.

DO YOU THINK USING SOFTWARE TO CORRECT A HARDWARE ISSUE WITH THE PLANE WAS THE RIGHT
WAY TO GO?

DO YOU THINK THEIR PROCESS HAD ADEQUATE CHECKS FOR SAFETY?

UBIQUITY OF COMPUTING – FUTURE TECHNOLOGY

EXAMPLE #4: SELF-DRIVING CARS – ARE THEY GOOD OR BAD FOR SOCIETY?

UNDERSTANDING THE PROBLEM YOU ARE TRYING TO SOLVE USING SOFTWARE IS
EXTREMELY IMPORTANT PRIOR TO DESIGNING THE SOLUTION.

• WILL THEY SAVE MONEY, OR WILL ROAD SYSTEMS NEED TO EQUIP WITH ADDITIONAL
SENSORS TO AID THE FULLY AUTOMATED VEHICLES?

• WILL THEY REDUCE TRAFFIC (BY PICKING UP MULTIPLE INDIVIDUALS ON THEIR WAY TO
WORK) OR WILL THEY CAUSE MORE CONGESTION (EMPTY VEHICLES PICK UP 1
INDIVIDUAL)?

• WILL THEY SAVE LIVES (95% OF ACCIDENTS ARE CAUSED BY HUMAN ERROR) OR WILL
THEY PUT THE OCCUPANTS AT RISK (COMPUTERS CAN BE HACKED).

IN CASES WHERE A CRASH IS UNAVOIDABLE; HOW WILL THE SOFTWARE DECIDE
WHAT OR WHO TO HIT?

SHOULD THE SOFTWARE ALWAYS PRIORITIZE THE LIVES OF INDIVIDUALS WITHIN THE
VEHICLE OR SHOULD ITS CRASH AVOIDANCE ALGORITHM BE BASED ON SAVING THE
GREATEST NUMBER OF LIVES?

IMPORTANCE OF ORGANIZATIONAL PROCESSES

WHAT IS A DEVELOPMENT PROCESS?

• A DEVELOPMENT PROCESS OR PROCESSES ARE USED TO DEFINE A SYSTEMATIC, DISCIPLINED,
AND QUANTIFIABLE APPROACH TO THE DEVELOPMENT, OPERATION, AND MAINTENANCE OF AN
END-PRODUCT.

WHY IS FOLLOWING A PROCESS IMPORTANT?

• PROCESS LAYS THE FOUNDATION OF HOW AN ORGANIZATION DEVELOPS WORK PRODUCTS,
ESTABLISHES MILESTONES, ENSURES QUALITY, ENSURES SAFETY (WHEN APPLICABLE) AND
MANAGES CHANGE TO ENSURE THE END-PRODUCT THEY PRODUCE MEETS THE NEEDS OF
THEIR CUSTOMER IN A TIMELY MANNER.

• PROCESSES ARE USED IN THE PLANNING, SPECIFICATION, DESIGN, IMPLEMENTATION, AND
TEST OF SPECIFICATIONS, SOFTWARE, AND HARDWARE TO SUPPORT INTEGRATED PRODUCT
TEAMS AND PROGRAMS GOALS.

• IN ADDITION, PROCESSES ARE USED TO MANAGE VARIOUS ASPECTS OF PROGRAMS INCLUDING
PROJECT TRACKING (COST & SCHEDULE), RISK MANAGEMENT, WORK PRODUCT PREPARATION
AND PRODUCTION, PRODUCT REUSABILITY AND SIZE MEASUREMENT, CONFIGURATION
MANAGEMENT, QUALITY ASSURANCE, AND TECHNICAL REVIEW PERIODICITY AND CONTENT.

• HOW WELL AN ORGANIZATION FOLLOWS IT PROCESSES ACTUAL IMPACTS ITS ABILITY TO BID
ON GOVERNMENT RELATED CONTRACTS.

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

• CMMI IS A PROCESS MODEL DEVELOPED BY THE SOFTWARE ENGINEERING INSTITUTE
AT CARNEGIE MELLON UNIVERSITY AS MECHANISM TO IMPROVE PERFORMANCE
THROUGHOUT AN ORGANIZATION.

• THE GOAL OF THE MODEL IS FOR ORGANIZATIONS TO CREATE A SET OF BEST
PRACTICES FOR RESOLVING PROCESS ISSUES, MINIMIZING PROGRAM RISKS, AND
CREATING A QUALITY PRODUCT IN THE MOST EFFICIENT MANNER.

• ORGANIZATIONS THAT HAVE MASTERED THESE PRACTICES CAN BE ASSESSED BY
THE CMMI INSTITUTE TO DETERMINE WHAT CMMI MATURITY LEVEL THEY ARE
OPERATING AT.

• THE GOVERNMENT TYPICALLY REQUIRES AN ORGANIZATION TO HAVE A CMMI
MATURITY LEVEL OF ANYWHERE FROM A 3 TO A 5 TO EVEN BE CONSIDERED AS A
CANDIDATE TO BID OR WORK ON A US GOVERNMENT CONTRACT. ORGANIZATIONS
THAT OBTAIN A CMMI MATURITY LEVEL OF 4 OR 5 ARE VIEWED TO BE MATURE.

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

• STANDARD CMMI APPRAISAL METHOD FOR PROCESS IMPROVEMENT (SCAMPI)
- IS THE OFFICIAL METHOD USED BY THE CMMI INSTITUTE TO EVALUATE AN
ORGANIZATIONS LEVEL OF MATURITY. THERE ARE THREE APPRAISAL CLASSES: CLASS
A, CLASS B, AND CLASS C.

• CLASS A – SCAMPI A IS THE MOST COMPREHENSIVE OF THE APPRAISAL CLASSES AND
RESULTS IN PROVIDING THE ORGANIZATION WITH AN OFFICIAL MATURITY LEVEL RATING.

• CLASS B – SCAMPI B IS LESS A RIGOROUS APPRAISAL METHOD. THIS APPRAISAL IS USEFUL
WHEN AN ORGANIZATION WANTS TO PERFORM AN INTERNAL SELF APPRAISAL TO DETERMINE
WHAT MATURITY LEVEL THEY WOULD ACHIEVE IF A SCAMPI A AUDIT WAS CONDUCTED. THIS
IS USED TO FIND POTENTIAL ISSUES AND CORRECT PROBLEMS PRIOR TO GOING THROUGH
THE OFFICIAL SCAMPI A ASSESSMENT.

• CLASS C – SCAMPI C IS A SHORT FLEXIBLE APPRAISAL METHOD THAT ASSISTS AN
ORGANIZATION’S BEST PRACTICES AND HOW WELL THEY ALIGN WITH CMMI PRACTICES. IT
CAN BE USED AT A HIGH-LEVEL TO ADDRESS ORGANIZATIONAL ISSUES OR AT A LOWER-LEVEL
TO ADDRESS PROGRAM OR PROCESS ISSUES AND TO ADDRESS SPECIFIC RISK AREAS.

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

CMMI MATURITY LEVELS
• CMMI LEVEL 1: INITIAL – PROCESSES WITHIN THE ORGANIZATION ARE NOT

WELL DEFINED AND MAY NOT BE REPEATABLE. THE ORGANIZATION RELIES ON
KEY INDIVIDUALS TO KEEP THINGS RUNNING AND IS MORE REACTIVE VS.
PROACTIVE IN MANAGING PROJECTS. PROGRAMS TYPICALLY DO NOT GET
COMPLETED WITHIN COST OR SCHEDULE DUE TO INEFFICIENCIES.

• CMMI LEVEL 2: MANAGED AND REPEATABLE – PROCESSES WITHIN THE
ORGANIZATION ARE DEFINED AND PRODUCE REPEATABLE RESULTS. THE
ORGANIZATION HAS ACHIEVED A BASIC LEVEL OF PROJECT MANAGEMENT IN
WHICH PROGRAMS ARE PLANNED, REQUIREMENTS MANAGED, AND
PROCESSES/WORK PRODUCTS ARE MONITORED, MEASURED, AND CONTROLLED.

• CMMI LEVEL 3: DEFINED – PROCESSES WITHIN THE ORGANIZATION ARE
STANDARDIZED TO PROVIDE CONSISTENT RESULTS ACROSS PROGRAM
EXECUTION. KEY PROGRAM AND TECHNICAL PROCESSES INCLUDE INTEGRATED
PROGRAM MANAGEMENT, CONFIGURATION MANAGEMENT, REQUIREMENTS
DEVELOPMENT, RISK MANAGEMENT, CAUSAL ANALYSIS AND RESOLUTION,
DESIGN, TEST, INTEGRATION, VERIFICATION & VALIDATION AND TRAINING.

• CMMI LEVEL 4: QUANTITATIVELY MANAGED – PROCESSES WITHIN THE
ORGANIZATION ARE MATURE ENOUGH THAT THEY CAN BE MEASURED USING
DEFINED METRICS TO MINIMIZE PROGRAM RISKS AND CORRECT PROCESS
DEFICIENCIES.

• CMMI LEVEL 5: OPTIMIZING – PROCESSES WITHIN THE ORGANIZATION ARE
MATURE ENOUGH THAT THEY ARE BOTH STABLE AND FLEXIBLE ALLOWING FOR
CONTINUOUS PROCESS IMPROVEMENT AS NEW TECHNOLOGY IS INCORPORATED
INTO THEIR WORK PRODUCTS.

KEY MANAGEMENT AND DISCIPLINE PROCESSES

Integrated Program Management
Program Organization

Key Program Processes: 1. Program Schedule and
Milestones, 2. Program Work Breakdown Structure/Cost

Collection Method, 3. Program Requirements, 4. Program
Verification & Validation Plan, 5. Program Change

Management Plan, 6. Program Risk Management Plan,
and 7. Program Stake Holder Involvement Plan, 8.

Program Quality Assurance Plan

Systems & Hardware Engineering
Disciplines

Systems Organization

Key Systems Processes: 1. System Requirement
Specifications, 2. Software Requirements Specifications

(SRS), 3. Systems Verification and Validation Plan.

Hardware Organization

Software Engineering Discipline
Software Organization

Key Software Processes: 1. Software Development Plan
(SDP), 2. Software Build Plan (SBP), 3. Software

Preliminary and Detail Design, 4. Software Code & Unit
Test Plan, 5. Software Coding Standards (Language
Specific), 6. Software Integration Plan, 7. Software

Verification Plan, 8. Software Configuration Management
Plan

PROCESS FLOW

WHAT IS A PROCESS FLOW?

• A PROCESS TYPICALLY OCCURS WITHIN A GENERIC PROCESS FRAMEWORK OF
COMMUNICATING, PLANNING, MODELING, CONSTRUCTION, AND
DEPLOYMENT.

• A PROCESS FLOW CAN BE LINEAR, ITERATIVE, EVOLUTIONARY OR PARALLEL.

LINEAR PROCESS FLOW

Communicatin
g

Planning Modeling Construction Deployment

PROCESS FLOW

ITERATIVE PROCESS FLOW

EVOLUTIONARY PROCESS FLOW

Planning Modeling Construction Deployment

Communicating Planning Modeling Construction Deployment

Communicating

PROCESS FLOW

PARALLEL PROCESS FLOW

Communicating Planning

Modeling

Construction Deployment

PROCESS MODEL

WHAT IS A PROCESS MODEL?
• A PROCESS MODEL IS USED TO DEFINE A SYSTEMATIC, DISCIPLINED, AND

QUANTIFIABLE APPROACH TO THE DEVELOPMENT, OPERATION, AND MAINTENANCE
OF A SOFTWARE WORK PRODUCT.

• PROCESS MODELS CAN BE PRESCRIPTIVE (IN WHICH TASKS ARE COMPLETED IN A
SEQUENTIAL FASHION) OR INCREMENTAL (IN WHICH TASKS ARE COMPLETED IN
LINEAR & PARALLEL FASHION) AND EVOLUTIONARY (IN WHICH TASKS ARE
COMPLETED INCREMENTALLY WITH EACH INCREMENT PROVIDING MORE CAPABILITY).

PRESCRIPTIVE PROCESS MODELS
• WATERFALL LIFECYCLE MODEL – IS A SEQUENTIAL DEVELOPMENT MODEL. IT WAS

THE PRIMARY MODEL USED IN DEPARTMENT OF DEFENSE (DOD) CONTRACTS FROM
THE 1980’S-1990’S. UNFORTUNATELY, MANY OF THESE PROGRAMS FAILED TO
PRODUCE THE END PRODUCT WITHIN COST AND SCHEDULE AND MANY FAILED TO
PRODUCE AN END PRODUCT AT ALL.

• VERIFICATION & VALIDATION (V) MODEL – IS A SEQUENTIAL DEVELOPMENT MODEL.

PROCESS MODEL

ITERATIVE AND EVOLUTIONARY PROCESS MODELS
• PROTOTYPING MODEL – ALTHOUGH PROTOTYPING CAN BE USED AS A STAND-

ALONE PROCESS MODEL, IT IS TYPICALLY USED IN SITUATIONS IN WHICH
REQUIREMENTS AND/OR THE LOOK-AND-FEEL OF THE USER INTERFACE NEED
ADDITIONAL INPUT FROM THE CUSTOMER.

• BOEHM SPIRAL MODEL – IS AN ITERATIVE AND EVOLUTIONARY DEVELOPMENT
MODEL.

• UNIFIED PROCESS (UP) MODEL – IS AN ITERATIVE AND EVOLUTIONARY
DEVELOPMENT MODEL.

• SCRUM AGILE PROCESS MODEL – IS AN ITERATIVE AND EVOLUTIONARY
DEVELOPMENT MODEL.

• EXTREME PROGRAMMING (XP) AGILE PROCESS MODEL – IS AN ITERATIVE
AND EVOLUTIONARY DEVELOPMENT MODEL.

• EVOLUTIONARY (EVO) PROJECT MANAGEMENT PROCESS MODEL – IS AN
ITERATIVE AND EVOLUTIONARY DEVELOPMENT MODEL.

COMMONALITY AMONG PROCESS MODELS

• COMMUNICATING/PLANNING – COMMUNICATING/COLLABORATING
WITH THE CUSTOMER AND OTHER STAKEHOLDERS, DEFINING THE
REQUIREMENTS (THIN SPECIFICATION), AND CREATING A SOFTWARE
DEVELOPMENT PLAN DESCRIBING THE WORK, TECHNICAL TASKS, RISKS,
RESOURCES, PROCESSES, AND WORK PRODUCTS TO BE PRODUCED
WITHIN A SPECIFIC SCHEDULE AND COST ESTIMATE.

• MODELING – SELECTING THE BEST DESIGN METHODOLOGY TO
PRODUCE A QUALITY WORK PRODUCT ON TIME AND WITHIN BUDGET.

• CONSTRUCTION – IMPLEMENTING THE SOLUTION (CODE AND TEST).

• DEPLOYMENT – PRODUCT (COMPLETED OR PARTIAL ITERATION) IS
DELIVERED TO THE CUSTOMER/STAKEHOLDER WHO EVALUATES THE
PRODUCT AND PROVIDES FEEDBACK.

COMMONALITY AMONG PROCESS ACTIVITIES

ALTHOUGH THE TERMINOLOGY BETWEEN PROCESS MODELS IS UNIQUE,
THEY HAVE COMPARABLE ACTIVITIES AND PRODUCE SIMILAR WORK
PRODUCTS.

12207-2017 ISO/IEC/IEEE Systems and SW
Engineering – SW Life-cycle Processes

Waterfall Life-Cycle Model (Example)

System Requirements Analysis Analysis – planning and requirements definition

System Architecture Design Analysis – planning and requirements definition

Software Requirements Analysis Analysis – planning and requirements definition

Software Architecture Design Design – software component interface design

Software Detailed Design Design – software component internal design

Software Coding and Test Implementation – software component
development and unit test

Software Integration Software Test – software component integration

Software Qualification Testing Software Test – software requirements verification

Software Installation Maintenance – software deployment
Software Acceptance Testing Maintenance – software system requirements

verification and maintenance

PRESCRIPTIVE PROCESS MODEL - WATERFALL

Communicating Planning Modeling Construction Deployment

Analysis Phase
* Planning
* Requirement
 Definition
Output = Software
Requirement
Specification (SRS)

Comm. + Planning

Design Phase
* Interfaces
 Between
 Components
* Detail Design
Output =
Software
Design Doc.
(SDD)
Modeling

Implementation
Phase
* Coding
* Debug
* Unit Test
Output =
Developed
Code

Construct

System Test
Phase
* Integration
* System Test
Output = Code
tested to the
SRS

Construct

Maintenance
Phase
• Enhanceme

nts
* Fix
problems

• Deployment

PRESCRIPTIVE PROCESS MODEL – V-MODEL

Requirements
Specification

Unit Testing

Architectural
Design

Component
Design

Code Generation

Integration
Testing

System Testing

Acceptance
Testing

Quick Planning

Quick Modeling

Construction of
Prototype

Deployment,
Delivery, & Customer

Feedback

Communicating

ITERATIVE AND EVOLUTIONARY PROCESS MODELS

Iteration 1

BOEHM SPIRAL MODEL

ITERATION 3

ITERATIVE AND EVOLUTIONARY PROCESS MODELS

Modeling – Analysis
& Design

Construction – Code
& Test

Deployment –
Delivery & Feedback

Iteration 2

Communicating

Planning –
Estimation,

Scheduling, Risk
Analysis

ITERATIVE AND EVOLUTIONARY PROCESS MODELS

UNIFIED PROCESS (UP) MODEL

SCRUM AGILE PROCESS MODEL

EXTREME PROGRAMMING (XP) AGILE PROCESS MODEL

EVOLUTIONARY (EVO) PROJECT MANAGEMENT PROCESS MODEL

NEW PRODUCT DEVELOPMENT

ACCORDING TO THE AUTHOR, THE “WATERFALL” LIFECYCLE MODEL IS
MORE IN LINE WITH “PREDICTABLE MANUFACTURING” IN WHICH PROGRAM
PLANNING AND REQUIREMENT SPECIFICATIONS OCCUR UP-FRONT AND IN
WHICH ESTIMATES ARE BASED ON KNOWN METHODOLOGIES.

Predictable Manufacturing New Product Development

Development effort and cost can be
determined up front.

Not possible to estimate
development effort and cost until
empirical data is possible.

Ability to create a detailed schedule
containing all the activities that need
to be performed.

Ability to create a detailed schedule
requires feedback from previous
builds.

Adapting to unpredictable change is
NOT the NORM. Change rates are
relatively low.

Creative adaptation to unpredictable
change is the NORM (e.g. Critical
Chain, Agile Feedback meeting, etc.)
Change rates are high.

NEW PRODUCT DEVELOPMENT

• SOFTWARE TYPICALLY FALLS INTO THE NEW PRODUCT DEVELOPMENT STAGE,
ESPECIALLY WHEN NEW TECHNOLOGY IS USED. ITERATIVE AND AGILE METHODS
TEND TO BE MORE FLEXIBLE IN MANAGING AND ACHIEVING PROGRAM GOALS.

• HISTORICALLY, THE DEPARTMENT OF DEFENSE (DOD) AND THE U.S. GOVERNMENT
HAS BEEN THE LARGEST PURCHASER OF SOFTWARE THROUGH THE 1990’S. MOST
GOVERNMENT CONTRACTS FOLLOWED THE WATERFALL LIFECYCLE MODEL OR A
DERIVATIVE OF BASED ON THE REQUIREMENTS SPECIFIED IN THE REQUEST FOR
PROPOSAL (RFP) THAT A CONTRACTOR RESPONDS TOO. UNFORTUNATELY, MANY
OF THE PROGRAMS DURING THE 1970’S AND MID 1980’S OVER RAN DUE TO COST
AND SCHEDULE ISSUES AND SOME FAILED TO PRODUCE AN END PRODUCT.

• TODAY THE DOD IS MOVING MORE TOWARDS A DEVOPS ENVIRONMENT IN WHICH
THEY MANAGE THE PROJECT INTERNALLY AND HIGHER CONTRACTORS TO
PERFORM THE WORK UNDER THEIR DIRECTION WITH ASSISTANCE FROM
TECHNICAL EXPORTS FROM THE CUSTOMER. THIS IS ENABLING THE DOD TO MOVE
MORE INTO THE AGILE DEVELOPMENT ARENA.

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN,
EIGHTH EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY
PEARSON EDUCATION , INC.

CMMI PROCESS MODEL - BY SARAH K. WHITE, SENIOR WRITER, CIO, MAR.
16, 2018

12207-2017 ISO/IEC/IEEE SYSTEMS AND SW ENGINEERING STANDARD

SOFTWARE ENGINEERING, A PRACTITIONER’S APPROACH, EIGHTH EDITION,
BY ROGER S. PRESSMAN AND BRUCE R. MAXIM, COPYRIGHT 2015 BY
MCGRAW HILL, NEW YORK, NY

CS466 – SOFTWARE
PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER

1)
A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 2: INTRODUCTION – THE KEY TO SUCCESSFUL PROGRAM
MANAGEMENT

BY: JOSEPH MARTINAZZI

LEAD WITH HONESTY AND INTEGRITY
PROGRAM MANAGEMENT IS RESPONSIBLE FOR DEFINING CLEAR OBJECTIVES FOR THE PROGRAM
TO ENSURE THE END-PRODUCT WILL MEET OR EXCEED THE CUSTOMER’S EXPECTATION
(RELIABILITY, SECURITY, AND SAFETY).

YOUR JOB AS A SOFTWARE MANAGER IS TO NOT ONLY UNDERSTAND PROGRAM OBJECTIVES, BUT
TO ALWAYS BE LOOKING AHEAD IN YOUR PLANNING SO THAT YOUR TEAM CAN BE ADAPTIVE AND
NOT REACTIVE WHEN ISSUES ARISE.

TO BE A SUCCESSFUL LEADER YOU NEED TO:

• EFFECTIVELY COMMUNICATE TO BOTH MANAGEMENT AND YOUR TEAM,

• DON’T CREATE A PLAN THAT REQUIRES YOUR TEAM TO ALWAYS WORK AT 110% (SAVE IT FOR
WHEN MURPHY’S LAW HITS),

• UTILIZE YOUR STAFF TO THE BEST OF THEIR ABILITIES (EVERYONE CAN BE A VALUABLE
CONTRIBUTOR),

• CREATE A TEAM ENVIRONMENT (YOU SUCCEED OR FAIL AS A TEAM),

• LEAD BY EXAMPLE (DON’T ASK YOUR TEAM TO DO SOMETHING YOU WOULDN’T DO YOURSELF),

• BECOME CAPTAIN AMERICA - SHIELD YOUR TEAM FROM PROGRAM POLITICS

• HAVE AN OUTWARDLY POSITIVE ATTITUDE!

EVERYTHING IS AWESOME, EVERYTHING IF COOL WHEN YOUR PART OF JOE’S TEAM. EVERYTHING IS
AWESOME WHEN YOUR LIVING THE PROGRAM X-Y-Z DREAM !

WHAT DO WE HAVE TO DO - KEEP MOVING FORWARD!

INITIAL PROGRAM PLANNING

INTEGRATED PROGRAM
MANAGEMENT

PROGRAM ORGANIZATION

KEY PROGRAM PROCESSES:
1. PROGRAM REQUIREMENTS DOCUMENT,
2. PROGRAM CHANGE MANAGEMENT PLAN,
3. PROGRAM VERIFICATION & VALIDATION
PLAN,

4. PROGRAM SCHEDULE AND MILESTONES (IMP
AND IMS),
5. PROGRAM WORK BREAKDOWN
STRUCTURE/COST COLLECTION METHOD,

6. PROGRAM STAKE HOLDER INVOLVEMENT
PLAN,
7. PROGRAM QUALITY ASSURANCE PLAN, AND
8. PROGRAM RISK MANAGEMENT PLAN.

As part of the initial program planning effort, key processes
must be established that take the following into account:

• The contractual requirements the system under development must
meet.

• A program “Change Management Plan” that describes how program
artifacts will be controlled and how change will be managed during
the development of the product (in-house) as well as for the delivered
product (customer facility) if necessary.

• The overall program testing strategy based on the contract and how
the end-products will be sold off to the customer.

• The time period (schedule) in which the system must be completed
including any interim milestones that must be met.

• The budget allocated to the effort you will be responsible for
managing. This includes task your team is directly responsible for as well as
support tasks for other organizations.

• The facilities (lab environment) you will need to support the
development of the end-product.

• A staffing plan to efficiently staff the program to meet cost and
schedule requirements.

• Risks associated with achieving program goals for the tasks your
team has been allocated.

INTEGRATED MASTER PLAN & MASTER SCHEDULE

A PROGRAM SCHEDULE IS TYPICALLY REFERRED TO AS AN INTEGRATED MASTER SCHEDULE (IMS)
AND IS BASED OFF A PROGRAM INTEGRATED MASTER PLAN (IMP) THAT WAS CREATED AT THE TIME
OF THE PROPOSAL.

ACCORDING TO THE “MITRE SYSTEMS ENGINEERING GUIDE”, A DEFINITION FOR AN IMP AND AN IMS
ARE AS FOLLOWS:

• “THE IMP COMPRISES A HIERARCHY OF PROGRAM EVENTS, IN WHICH EACH EVENT IS
SUPPORTED BY SPECIFIC ACCOMPLISHMENTS, AND EACH ACCOMPLISHMENT IS BASED ON
SATISFYING SPECIFIC CRITERIA TO BE CONSIDERED COMPLETE. THE IMP IS AN EVENT-DRIVEN
PLAN IN WHICH THE EVENTS ARE NOT TIED TO CALENDAR DATES; THEY ARE TIED TO THE
ACCOMPLISHMENT OF A TASK OR WORK PACKAGE AS EVIDENCED BY THE SATISFACTION OF
THE SPECIFIED CRITERIA FOR THAT ACCOMPLISHMENT.”

• “THE IMS IS AN INTEGRATED, NETWORKED SCHEDULE OF ALL THE DETAILED, DISCRETE
WORK PACKAGES AND PLANNING PACKAGES (OR LOWER LEVEL TASKS OF ACTIVITIES)
NECESSARY TO SUPPORT THE IMP'S EVENTS, ACCOMPLISHMENTS, AND CRITERIA. THE IMS IS
DEVELOPED FROM THE IMP, MAJOR CONTRACTOR EVENTS, ACCOMPLISHMENTS, ENTRANCE
CRITERIA, EXIT CRITERIA, AND THE WBS, WHICH DEFINES THE PROGRAM WORK STRUCTURE
AND WORK PACKAGES. THE IMS IS TIME DRIVEN, TIED TO CALENDAR DATES, AND SHOULD
BE DEFINED TO THE LEVEL OF DETAIL NECESSARY FOR PROGRAM EXECUTION.”REFERENCES AND RESOURCES

DAU, DEFENSE ACQUISITION GUIDEBOOK, CHAPTER 11.3.1.4.2, INTEGRATED MASTER SCHEDULE (IMS), ACCESSED JUNE 7, 2016.
DEPARTMENT OF DEFENSE, OCTOBER 21, 2005, INTEGRATED MASTER PLAN AND INTEGRATED MASTER SCHEDULE: PREPARATION AND USE GUIDE, VER. 0.9, ACCESSED SEPTEMBER 14, 2017.
INCOSE, 2015, SYSTEMS ENGINEERING HANDBOOK, A GUIDE FOR SYSTEM LIFE-CYCLE PROCESSES AND ACTIVITIES, FOURTH ED., INCOSE‐TP‐2003‐002‐04.
PROJECT MANAGEMENT INSTITUTE (PMI), 2013, STANDARD FOR PROGRAM MANAGEMENT, THIRD ED

HTTPS://WWW.MITRE.ORG/PUBLICATIONS/SYSTEMS-ENGINEERING-GUIDE/ACQUISITION-SYSTEMS-ENGINEERING/ACQUISITION-PROGRAM-PLANNING/INTEGRATED-MASTER-SCHEDU
LE-IMSINTEGRATED-MASTER-PLAN-IMP-APPLICATION

https://acc.dau.mil/GetAttachment.aspx?id=151927&pname=file&aid=28904&lang=en-US
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999401.html
https://www.pmi.org/pmbok-guide-standards/foundational/the-standard-for-program-management-3rd-edition
https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/acquisition-program-planning/integrated-master-schedule-imsintegrated-master-plan-imp-application
https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/acquisition-program-planning/integrated-master-schedule-imsintegrated-master-plan-imp-application

INTEGRATED MASTER PLAN & MASTER SCHEDULE

Typepad – Creative Commons

EXAMPLE IMP AND IMS

The high-level program
schedule typically comes
directly from the contract and
is based on the proposed
schedule in the Request for
Proposal (RFP) that was refined
in your company’s proposal.

INTEGRATED MASTER PLAN & MASTER SCHEDULE

THE IMS IS ONE OF THE MOST IMPORTANT PROGRAM MANAGEMENT TOOLS TO EFFECTIVELY
MANAGING THE PROGRAM.

• IT IS USED TO REPORT PROGRESS TO THE CUSTOMER, AND

• IT IS USED BY PROGRAM MANAGEMENT TO DETERMINE IF THE PROGRAM IS ON SCHEDULE.

AT THE END OF STARTUP PLANNING THE IMS WILL BE BASELINED WITH ALL PROGRAM
TASKS IDENTIFIED IN EITHER A

• WORK PACKAGE (IMPLYING THE TASK CAN BE WORKED WITHIN THE NEXT SEVERAL MONTHS)
OR IN A

• PLANNING PACKAGE (TASKS TO BE WORKED AT SOME FUTURE DATE ON THE PROGRAM).

• SOME WORK MAY ALSO BE PLANNED AS A LEVEL OF EFFORT (LOE).
MY RECOMMENDATION IS TO AVOID USING LOE.

EACH TASK WILL ALSO HAVE

• AN ASSOCIATED DURATION (HOURS),

• AN ASSOCIATED BUDGET (DOLLARS),

• AND A MEASURE OF HOW STATUS WILL BE REPORTED (E.G. 50-50, PERCENT COMPLETE, ETC.).
MY RECOMMENDATION IS TO ALWAYS DEFAULT TO USING THE PERCENT COMPLETE METHOD AS
THE PREFERRED METHOD TO MEASURE PROGRESS ON A TASK.

INTEGRATED MASTER PLAN & MASTER SCHEDULE

Typepad – Creative Commons

Deployment

Construction

Modeling

Communicating/Planning

Deployment

Construction

Modeling

Communicating/Planning

INTEGRATED MASTER PLAN & MASTER SCHEDULE

PROGRAM STATUS CAN BE COLLECTED FROM AN EARNED VALUE MANAGEMENT SYSTEM AND PULLED INTO THE
IMS ON A WEEKLY BASIS TO DETERMINE THE PROGRESS OF ALL TASKS CURRENTLY IN WORK.

• TASKS WILL EITHER SHOW THEY ARE AHEAD OF SCHEDULE, ON SCHEDULE, OR BEHIND SCHEDULE.

• ON A ROLL-UP LEVEL, THIS WILL SHOW IF THE OVERALL PROGRAM IS AHEAD, ON, OR BEHIND SCHEDULE.
IF THE PROGRAM SCHEDULE IS DELAYED; COSTS BECOME UNCONTROLLABLE.

REMEMBER PROGRAM BUDGETS ARE CALENDARIZED BASED ON THE IMS. AS A RESULT, IF SEVERAL OF THE
TASKS YOU ARE RESPONSIBLE FOR SLIP INTO A DIFFERENT CALENDAR YEAR, THEY MAY OVER-RUN BASED ON
DOLLARS EVEN IF THEY COMPLETE WITHIN THE HOURS ALLOCATED TO COMPLETE THE WORK ASSOCIATED
WITH THE TASK.

THE ABILITY TO MONITOR ALL TASKS WITHIN A SCHEDULE GIVES PROGRAM MANAGEMENT THE ABILITY TO
DETERMINE CRITICAL PATHS THAT DRIVE THE PROGRAM. TYPICALLY, PROGRAMS WILL MONITOR THE TOP
THREE CRITICAL PATHS THROUGH THE PROGRAM. TYPICALLY SOFTWARE DEVELOPMENT, INTRA-SITE
COMMUNICATION DEVELOPMENT, OR HARDWARE PROCUREMENT WILL DRIVE THE PROGRAM CRITICAL PATHS.

IF A TASK YOU ARE RESPONSIBLE FOR IS ON ONE OF THE PROGRAM CRITICAL PATHS YOU WILL NEED TO BE
PREPARED TO ALWAYS HAVE A SOLUTION AS TO HOW TO MINIMIZE THE SCHEDULE TO COMPLETE THAT TASK.

MANAGING PROGRAM SCHEDULE BUFFERS

AN EFFECTIVE WAY TO
MINIMIZE PROGRAM SCHEDULE
IMPACT AND KEEP INSIGHT
INTO TASK IMPLEMENTATION IS
BY UTILIZING A PROCESS
KNOWN AS “CRITICAL CHAIN
PROJECT MANAGEMENT”
WHICH FOCUSES ON
MANAGING PROGRAM BUFFERS
AND RESOURCES (STAFFING
AND LAB EQUIPMENT).

PROGRAMS THAT
SUCCESSFULLY MANAGE THEIR
BUFFERS WILL END UP BEING
SUCCESSFUL. WordPress.com – Creative Commons

MANAGING PROGRAM SCHEDULE BUFFERS

SW DEVELOPERS ARE ALWAYS OPTIMISTIC WHEN ASKED HOW LONG IT WILL
TAKE TO COMPLETE A TASK. THEIR ANSWER NEVER ACCOUNTS FOR MURPHY’S
LAW (IF SOMETHING CAN GO WRONG IT WILL GO WRONG).

AS A MANAGER YOU NEED TO ACCOUNT FOR MURPHY’S LAW BY MANAGING
THE DEVELOPMENT SCHEDULE. ONE OF THE MOST EFFECTIVE WAYS TO DO
THIS IS TO CREATE A BUILD PLAN WITH A SCHEDULE BUFFER BUILT IN.

FOR EXAMPLE, IF YOU SAY BUILD 1 WILL TAKE 3 MONTHS TO COMPLETE IN THE
BUILD PLAN.

• WHEN YOU ACTUALLY PLAN THE ACTIVITY IN THE IMS YOU WILL NEED TO BUILD IN
A 3 WEEK BUFFER BY ACTUALLY PLANNING ALL OF THE TASKS TO COMPLETE 3
WEEKS AHEAD OF THE ADVERTISED FINISH OF THE BUILD BY USING SCHEDULE
DEPENDENCIES (BASED ON RESOURCE AVAILABILITY) VS. TECHNICAL
DEPENDENCIES (BASE ON COMPONENT DESIGN DEPENDENCIES).

• ANOTHER WAY TO ACHIEVE THIS IS TO HAVE TASKS TO FIX ISSUES ASSOCIATED
WITH EACH BUILD THAT THE DEVELOPMENT WORK FEEDS INTO.

PROGRAM STAFFING NEEDS
THE IMS IS ALSO A KEY TOOL TO IDENTIFY IF PROGRAM
STAFFING WILL IMPACT PRODUCT DEVELOPMENT FROM
BOTH A SCHEDULE AND COST PERSPECTIVE.

SINCE THE IMS PROVIDES A CALENDARIZED ROLE UP AS TO
WHEN TASKS NEED TO BE COMPLETED (HOURS) A STAFFING
PROFILE CAN BE EXTRACTED FROM THE IMS WHICH
INDICATES HOW MANY PEOPLE WILL BE NEEDED TO
COMPLETE THE WORK AND THE DURATION THOSE
INDIVIDUALS WILL BE NEEDED FOR.

THIS STAFFING PROFILE WILL INDICATE HOW MANY PEOPLE
YOU NEED TO COMPLETE THE TASKS WITHIN YOUR
SCHEDULE.

• IF YOUR ORGANIZATION IS OVER STAFFED, YOU SHOULD BE
COMPLETING TASKS AHEAD OF SCHEDULE TO STAY ON
BUDGET.

• IF YOUR ORGANIZATION IS CORRECTLY STAFFED, YOU
SHOULD BE COMPLETING TASK ON OR AHEAD OF SCHEDULE
(ASSUMING THE TASKS ARE CORRECTLY SCOPED),

• IF YOUR ORGANIZATION IS UNDERSTAFFED YOU COULD END
UP IN A SITUATION IN WHICH THE ENTIRE PROGRAM
SCHEDULE FALLS BEHIND IF YOU CAN NOT COMPLETE THE
WORK AS PLANNED.

1/1/2020 6/1/2020 12/1/2020 1/1/2021 6/1/2021
0

5

10

15

20

25

30

35

40

Program-XYZ Engineering Staffing

SE Staffing SW Staffing

PROGRAM STAFFING NEEDS

1/1/2020 6/1/2020 12/1/2020 1/1/2021 6/1/2021
0

5

10

15

20

25

30

35

40

Program-XYZ Engineering Staffing

SE Staffing SW Staffing

1/1/2020 6/1/2020 12/1/2020 1/1/2021 6/1/2021
0

5

10

15

20

25

30

35

40

Program-XYZ OPTIMIZED
Engineering Staffing Across

Disciplines

SE Staffing SE-SW Staffing SW Staffing2

SE STAFF MOVES TO PRODUCT
OWNER AND INTEGRATION
TEST ROLEs ONCE INITIAL
REQUIREMENTS COMPLETED

MORE LEVEL SE
& SW STAFFING
PROFILE

PROGRAM STAFFING NEEDS

1/1/2020 6/1/2020 12/1/2020 1/1/2021 6/1/2021
0

5

10

15

20

25

30

35

40

45

Program-XYZ Late SE Roll to SW -
More complex requirements than

planned)

SE Staffing SE-SW Staffing SW Staffing2

SE STAFF DELAYED IN MOVIING
TO PRODUCT OWNER AND
INTEGRATION TEST ROLEs DUE
TO MORE COMPLEX
REQUIREMENT DEVELOPMENT
THAN PLANNED.

1/1/2020 6/1/2020 12/1/2020 1/1/2021 6/1/2021
0

5

10

15

20

25

30

35

40

Program-XYZ OPTIMIZED
Engineering Staffing Across

Disciplines

SE Staffing SE-SW Staffing SW Staffing2

SE STAFF MOVES TO PRODUCT
OWNER AND INTEGRATION
TEST ROLEs ONCE INITIAL
REQUIREMENTS COMPLETED

MORE LEVEL SE
& SW STAFFING
PROFILE

SW PROJECT PLANNING - OVERVIEW
THE INITIAL PLANNING STAGE OF A PROGRAM HAPPENS WITHIN A VERY SHORT PERIOD
OF TIME.

THE KEY OBJECTIVES FOR THE SOFTWARE PROGRAM MANAGER (SPM) DURING THIS
PHASE OF THE PROGRAM INCLUDES:

• DETAIL PLANNING TASKS THAT NEED TO BE COMPLETED WITHIN THE PROGRAM SCHEDULE.

• ACCOUNTING FOR THE ASSOCIATED RISKS IN THE DEVELOPMENT OF THOSE TASKS,

• DETERMINING IF THOSE RISKS NEED TO BE REALIZED OR MITIGATED AS PART OF THE INITIAL
PLAN,

• SECURING THE NECESSARY BUDGET TO COMPLETE ALL TASKS ASSIGNED TO THE
ORGANIZATION,

• SECURING THE SCHEDULE NEEDED TO DEVELOP THE PRODUCT, AND

• CREATING ALL STARTUP PROCESSES NEEDED TO EXECUTE THE SOFTWARE DEVELOPMENT
EFFORT

• SPENDING AS LITTLE MONEY AS POSSIBLE DURING THIS PHASE OF THE PROGRAM.

SW PROJECT PLANNING - ASSUMPTIONS

FOR THE PURPOSE OF THIS DISCUSSION, WE ARE GOING TO ASSUME

• THE COMPANY YOU WORK FOR HAS AN EXISTING PRODUCT THEY PLAN ON
LEVERAGING TO MEET MOST OF THE REQUIREMENTS SPECIFIED IN THE
CUSTOMER’S RFP.

• THIS PRODUCT HAS AN ASSOCIATED SOFTWARE BASELINE THAT CAN BE
LEVERAGED AS A STARTING POINT FOR THE PROGRAM.

• SINCE YOUR COMPANY HAS A CMMI LEVEL 5 RATING, WE KNOW THAT THE
COMPANY HAS ESTABLISHED METRICS ON BOTH SOFTWARE SIZE AND
SOFTWARE PRODUCTIVITY THAT WENT INTO THE PROPOSAL ESTIMATE
(MEANING THE BUDGET YOUR ORGANIZATION BID SHOULD BE SUFFICIENT TO
COVER THE COST OF IMPLEMENTING THE SYSTEM).

SW PROJECT PLANNING – INITIAL STAFFING
THE SOFTWARE STAFF DURING THIS STAGE OF THE PROGRAM NEEDS TO BE MINIMALIZED TO
PREVENT EROSION OF BUDGET DURING THE PLANNING STAGE.

MY RECOMMENDATION IS THAT IT INCLUDES THE SPM, A SOFTWARE TECHNICAL LEAD (STD) AND
ADDITIONAL STAFF ONLY AS NEEDED TO SUPPORT THE PROGRAM STARTUP ACTIVITIES.

REMEMBER THE JOB OF THE SPM IS TO ALWAYS LOOK AHEAD AND MITIGATE PROGRAM RISK.

• YOUR SUCCESS WILL ULTIMATELY BE DETERMINED BASED ON YOUR ABILITY TO COMPLETE THE
PROGRAM WITHIN COST AND SCHEDULE.

• THE ONLY ONE THAT WILL REMEMBER CHALLENGES YOU HAVE TO OVERCOME IS YOURSELF!

• CHALLENGES MAY COME FROM THE PROGRAM OFFICE (PMO) OR FROM YOU OWN ORGANIZATION
WITHIN THE COMPANY. INITIAL PROGRAM STAFFING MAY BE THE FIRST CHALLENGE YOU HAVE TO
OVERCOME.

• IF YOUR ORGANIZATION FORCES YOU TO STAFF UP EARLIER THAN YOU WANT, MAKE SURE YOU HAVE A
WAY TO ACCURATELY COLLECT COSTS, HAVE TASKS INDIVIDUALS CAN WORK TO ACHIEVE PROGRAM
GOALS, AND HAS MANAGEMENT OVERSITE.

• IF YOUR ORGANIZATION DOESN’T HAVE THE STAFF TO SUPPORT YOUR PROGRAM, BRING SOMEONE ON
BOARD WHO IS CAPABLE OF OPENING JOB REQUISITIONS INTERVIEWING AND GETTING THE STAFFING
TALENT YOUR PROGRAM WILL NEED.

SW PROJECT PLANNING – ESTABLISHING A BASELINE SCHEDULE AND BUDGET

YOUR GOAL AS A SOFTWARE MANAGER WILL BE TO UNDERSTAND THE IMP AND IMS AND
CREATE A SOFTWARE BUILD PLAN (SBP) THAT CAN FIT INTO THE PROGRAM SCHEDULE THAT
ACCOUNTS FOR ALL THE TASKS YOUR TEAM WILL BE RESPONSIBLE TO COMPLETE OR SUPPORT.

IN ADDITION, YOU WILL BE RESPONSIBLE FOR UNDERSTANDING THE SOFTWARE BID YOUR
ORGANIZATION PUT FORTH IN RESPONSE TO THE CUSTOMER’S RFP AND JUSTIFY THE COST TO
COMPLETE EACH ACTIVITY TO THE PROGRAM OFFICE PRIOR TO THEM ALLOCATING YOUR
BUDGET.

ALL ACTIVITIES WITHIN THE PROPOSAL ARE ORGANIZED IN A WORK BREAKDOWN STRUCTURE
(WBS) THAT MAPS HOURS AND BUDGETS TO ACTIVITIES THAT NEED TO BE PERFORMED AS
PART OF PROGRAM EXECUTION. THESE ACTIVITIES INCLUDE:

• SOFTWARE MANAGEMENT ACTIVITIES,

• SOFTWARE SUPPORT ACTIVITIES,

• SOFTWARE DEVELOPMENT ACTIVITIES,

• SOFTWARE TEST ACTIVITIES, AND

• SOFTWARE MAINTENANCE ACTIVITIES

SW PROJECT PLANNING – EXAMPLE PROGRAM WBS

 A - Systems
Engineering

B - Software
Engineering

Product A

H –
Procurement

F - Field
Engineering

Site Installation

Program Office

B.1 – SW
Management

E - Hardware
Engineering

G - Quality
Engineering

C - Software
Engineering

Product B

D - Software
Engineering

Product C

B.2 – SW
Support

B.3 – SW
Development

B.4 – SW
Test

B.5 – SW
Maintenance

C.1 – SW
Management

C.2 – SW
Support

C.3 – SW
Development

C.4 – SW
Test

C.5 – SW
Maintenance

D.1 – SW
Management

D.2 – SW
Support

D.3 – SW
Development

D.4 – SW
Test

D.5 – SW
Maintenance

SW PROJECT PLANNING – ESTABLISHING A BASELINE SCHEDULE AND BUDGET

IF YOU’RE LUCKY, AN ARTIFACT THAT MAY HAVE BEEN CREATED DURING
THE PROPOSAL PHASE IS A THIN SPECIFICATION (SPEC.).

THIS DOCUMENT TYPICALLY GOES ALONG WITH A BID AN ORGANIZATION PUT
FORTH THAT ESTIMATED HOW MUCH EFFORT IT WOULD TAKE TO IMPLEMENT
THE CAPABILITIES/FEATURES OF THE END-PRODUCT SPECIFIED IN THE RFP.

DURING STARTUP, THE PROPOSAL INFORMATION IS USED TO:

1. CREATE A SOFTWARE BUILD PLAN (SBP),

2. SUPPORT DETAILED IMS PLANNING,

3. JUSTIFY YOUR ORGANIZATIONS BUDGET TO PROGRAM MANAGEMENT,

4. SOLIDIFY YOUR THE WBS STRUCTURE YOU WANT TO USE TO MANAGE THE
PROGRAM, AND

5. CREATE A SOFTWARE DEVELOPMENT PLAN (SDP).

SW PROJECT PLANNING – CREATING THE SBP

1. CREATE A SOFTWARE BUILD PLAN (SBP)

THE SPM NEEDS TO WORK WITH THE STD IN LAYING OUT THE PRELIMINARY SBP
WHICH SIMPLY BREAKS THE SOFTWARE INTO MAJOR CAPABILITIES OR FEATURES
AND IDENTIFIES THE SEQUENCE IN WHICH THOSE CAPABILITIES/FEATURES WILL
BE DEVELOPED (FROM AN AGILE PERSPECTIVE YOU CAN THINK OF THIS
EXERCISE AS CREATING A PRODUCT BACKLOG AND ESTIMATING THE EFFORT
ASSOCIATED WITH DEVELOPING THESE HIGH-LEVEL FEATURES)

1) THE FIRST STEP IN CREATING A SOFTWARE BUILD PLAN IS FOR THE SPM,
STD, AND OTHER TECHNICAL LEADS WITHIN THE ORGANIZATION TO CREATE
A BASIS OF ESTIMATE (BOE) FOR EACH CAPABILITY/FEATURE BEING
DEVELOPED BASED ON ESTABLISHED SIZE AND PRODUCTIVITY METRICS
(HOW MANY LINES OF CODE WILL BE DEVELOPED AND MANY HOURS IT WILL
TAKE TO COMPLETE THE TASK).

2) EACH BOE SHOULD ALSO HAVE A HIGH-LEVEL DESCRIPTION OF WHAT EACH
CAPABILITY/FEATURE WILL ACHIEVE.

SW PROJECT PLANNING – CREATING THE SBP

3) SOFTWARE BUILD PLAN (SBP) STRUCTURE

• POINT OF DEPARTURE BUILD – TYPICALLY CONSIST OF CREATING A SOFTWARE
BASELINE TO SUPPORT THIS PROGRAM FROM A PRODUCT LINE BASELINE.
TYPICAL ACTIVITIES WOULD INCLUDE PORTING THE SOFTWARE AND
ASSOCIATED TEST BED AND CREATING ADAPTATION DATA TO SUPPORT THE
SPECIFIC PROGRAM.

• FRAMEWORK ENHANCEMENT BUILD – TYPICALLY CONSIST OF MODIFICATIONS
TO THE PRODUCT LINE ARCHITECTURE TO SUPPORT THE NEW COMPONENTS
OR FEATURES (EXAMPLES INCLUDE CORE FRAMEWORK ENHANCEMENTS,
MESSAGING FRAMEWORK ENHANCEMENTS, AND PERFORMANCE
ENHANCEMENTS).

• CAPABILITY/FEATURE BUILDS – ONE OR MORE BUILDS THAT ADD
CAPABILITIES/FEATURES BASED ON THE CONCEPT OF MUST-HAVE FEATURES,
NICE-TO-HAVE FEATURES, AND WOULD-BE-GREAT-TO-HAVE FEATURES IF
POSSIBLE.

SW PROJECT PLANNING – CREATING THE SBP

4) SOFTWARE BUILD PLAN (SPB) CONTENT

BUILD 0 – POINT OF DEPARTURE BUILD

USE CASE 0.1 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 0.2 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 0.3 – DESCRIPTION OF CAPABILITY/FEATURE

BUILD 1 – FRAMEWORK ENHANCEMENT BUILD

USE CASE 1.1 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 1.2 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 1.3 – DESCRIPTION OF CAPABILITY/FEATURE

BUILD 2 – CAPABILITY/FEATURE A BUILD

USE CASE 2.1 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 2.2 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 2.3 – DESCRIPTION OF CAPABILITY/FEATURE

BUILD 3 – CAPABILITY/FEATURE B BUILD

USE CASE 3.1 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 3.2 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 3.3 – DESCRIPTION OF CAPABILITY/FEATURE

BUILD 4 – CAPABILITY/FEATURE C BUILD

USE CASE 4.1 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 4.2 – DESCRIPTION OF CAPABILITY/FEATURE

USE CASE 4.3 – DESCRIPTION OF CAPABILITY/FEATURE

SW PROJECT PLANNING – DETAILED PLANNING

2. SUPPORT DETAILED IMS PLANNING

ONCE YOUR SBP IS COMPLETED, YOU CAN BEGIN CREATING TECHNICAL AND
SCHEDULE DEPENDENCIES BETWEEN THE DEVELOPMENTAL ACTIVITIES IN THE
IMS.

1) AS PART OF THE INITIAL PLANNING STAGE – ALL SOFTWARE ACTIVITIES MUST
BE MAPPED TO A TASK WITHIN THE IMS AND HAVE HOURS AND BUDGET
ASSOCIATED WITH THE TASK. ACTIVITIES WITHIN THE IMS ARE MODELED AS
A

• WORK PACKAGE – MEANING THE WORK DEFINED WITHIN THIS WORK PACKAGE IS
AUTHORIZED TO BE WORKED ON TODAY OR WITHIN THE NEXT FEW MONTHS.

• PLANNING PACKING – MEANING THE WORK DEFINED WITHIN THIS WORK PACKAGE
WILL BE AUTHORIZED TO BE PERFORMED SOMETIME IN THE FUTURE.

• LEVEL-OF-EFFORT – MEANING CREDIT FOR THE WORK AUTOMATICALLY OCCURS
WHETHER OR NOT ANYTHING GETS ACCOMPLISHED OR AN INDIVIDUAL WORKS A
TASK (E.G. SPM OR SUPPORT LABOR)

SW PROJECT PLANNING – DETAILED PLANNING

2) MODELING EACH CATEGORY WITHIN THE SOFTWARE BID IN THE IMS

• SOFTWARE MANAGEMENT AND SUPPORT ACTIVITIES – ARE PLANNED IN THE IMS AS EITHER A
WORK/PLANNING PACKAGE TASK OR A LOE TASK AND LINKED SEQUENTIALLY OVER A PERIOD OF
PERFORMANCE.

• SOFTWARE DEVELOPMENT ACTIVITIES – ARE PLANNED IN THE IMS AS EITHER A WORK/PLANNING
PACKAGE DISCRETE TASK AND LINKED BASED ON THEIR TECHNICAL AND SCHEDULE DEPENDENCIES TO
OTHER DEVELOPMENTAL DISCRETE TASKS.

NOTE: IMS LOGIC MUST TAKE THE SOFTWARE DEVELOPMENT MODEL SPECIFIED WITHIN THE SOFTWARE DEVELOPMENT PLAN
(SDP) INTO ACCOUNT. FOR EXAMPLE, IF THE SDP STATES THAT AN ITERATIVE APPROACH FOR SW DEVELOPMENT IS BEING USED
THEN THE IMS LOGIC MUST REFLECT THAT MODEL AS PART OF THE DEVELOPMENT SCHEDULE.

• SOFTWARE TEST ACTIVITIES – ARE PLANNED IN THE IMS AS EITHER A WORK/PLANNING PACKAGE
DISCRETE TASK AND LINKED BASED ON THEIR TECHNICAL AND SCHEDULE DEPENDENCIES TO
DEVELOPMENTAL DISCRETE TASKS.

• SOFTWARE MAINTENANCE ACTIVITIES – ARE PLANNED IN THE IMS AS EITHER A WORK/PLANNING
PACKAGE DISCRETE TASK AND LINKED BASED ON THEIR TECHNICAL AND SCHEDULE DEPENDENCIES TO
DEVELOPMENTAL AND TEST DISCRETE TASKS.

THE SUM OF ALL TASKS IN THE BASELINED IMS WILL TRANSLATE TO THE BASELINE SCHEDULE (IN HOURS)
AND BUDGET (IN DOLLARS) TO COMPLETE THE WORK.

MY RECOMMENDATION IS TO NEVER USE AN LOE TASK IN THE IMS UNLESS YOU ARE FORCED TO DO SO!

SW PROJECT PLANNING – ESTABLISHING YOUR COST BASELINE

3. JUSTIFY YOUR ORGANIZATIONS BUDGET TO PROGRAM MANAGEMENT.

1) EACH TASK WILL NEED TO HAVE A BASIS OF ESTIMATE (BOE) BASED ON KNOWN
METRICS. ONCE PROGRAM MANAGEMENT AGREES TO THE BUDGET YOUR TEAM WILL
BE ALLOCATED, HOURS TO COMPLETE EACH TASK ALONG WITH THE CORRESPONDING
BUDGET TO COMPLETE EACH TASK WILL BE ASSIGNED TO EACH TASK IN THE IMS.

2) REMEMBER FOR A PROGRAM TO BE SUCCESSFUL, YOU NEED TO EFFECTIVELY
MANAGE COST BY USING A SIMILAR BUFFER STRATEGY AS WHEN YOU WERE DEALING
WITH THE SCHEDULE.

• EFFECTIVE PROGRAMS WILL CREATE A BUDGET RESERVE BY ADDING PRODUCTIVITY
CHALLENGES TO EACH ORGANIZATION.

• AS THE SPM, YOU WILL NEED TO DETERMINE IF YOU ARE GOING TO LEVEL THAT
PRODUCTIVITY CHALLENGE EQUALLY ACROSS ALL DEVELOPMENT EFFORTS, SUPPORT, AND
MANAGEMENT ACTIVITIES OR ONLY ON A SUBSET OF THE DEVELOPMENT EFFORT.

 EVEN IF YOU ARE NOT FORCED TO TAKE A PRODUCTIVITY CHALLENGE, IT IS ALWAYS A GOOD
IDEA TO CREATE AN INTERNAL BUDGET RESERVE THAT YOU CAN MANAGE SINCE THE TEAM
THAT IMPLEMENTS A CAPABILITY/FEATURE ULTIMATELY NEEDS TO BUY INTO THE BUDGET THEY
HAVE BEEN ALLOCATED.

SW PROJECT PLANNING – ACCOUNTING FOR RISKS

3) ACCOUNT FOR RISK IN YOUR COST BASELINE

IN YOU ARE FORCED TO TAKE A PROGRAM PRODUCTIVITY CHALLENGE ALWAYS ADD
A PROGRAM RISK ASSOCIATED WITH THE PRODUCTIVITY CHALLENGE.

ANOTHER TYPICAL SOFTWARE RISK THAT SHOULD ALWAYS BE INCLUDED IS A SW
SIZE RISK IF NEW TECHNOLOGY WILL BE USED AND YOUR METRICS MANY NOT
ACCURATELY REFLECT THE EFFORT TO DEVELOP THE PRODUCT.

ANOTHER TYPE OF SOFTWARE RISK THAT SHOULD ALWAYS BE INCLUDED IS A RISK
DEALING WITH CAPABILITIES/FEATURES THAT HAVE A PERFORMANCE REQUIREMENT
ASSOCIATED WITH THEM THAT YOUR SYSTEM CURRENTLY DOES NOT MEET.

FINALLY, YOU SHOULD INCLUDE ANY RISKS DUE TO OBSOLESCENCE, HARDWARE
AVAILABILITY, AND SUB-CONTRACTOR ISSUES.

IF THERE ARE HIGH RISK ITEMS THAT ARE A PART OF YOUR BID, YOU MAY
WANT TO CONSIDER ASKING THE PROGRAM TO FUND A RISK MITIGATION
ACTIVITY AS PART OF YOUR INITIAL SOFTWARE BASELINE.

SW PROJECT PLANNING – DECOMPOSING THE WBS

4. AS PREVIOUSLY STATED, THE HIGH-LEVEL WBS IS TYPICALLY DEFINED AS PART OF
THE PROPOSAL EFFORT IN RESPONSE TO A CUSTOMER RFP.

• YOUR GOAL IS TO CREATE THE LOWER LEVEL WBS STRUCTURE SO THAT YOU CAN
ACCURATELY MANAGE THE HOURS AND ASSOCIATED COST TO COMPLETE EACH TASK YOU
ARE MANAGING.

• THIS DATA WILL NOT ONLY HELP YOU MANAGE THIS PROGRAM BUT WILL PROVIDE YOUR
ORGANIZATION WITH DATA THEY CAN USE WHEN BIDDING SW PRODUCTIVITY ON FUTURE
PROGRAMS.

• ALTHOUGH YOU ARE ULTIMATELY RESPONSIBLE FOR THE COST TO COMPLETE THE WORK
YOU HAVE SIGNED UP FOR MY RECOMMENDATION IS TO ALWAYS MANAGE YOUR PROGRESS
IN HOURS VS. DOLLARS. COMPLETING A TASK ON OR IN LESS HOURS THAN YOUR
BASELINE HOURS WILL TELL YOU HOW WELL YOUR TEAM IS PERFORMING.

• THE COST OF PERFORMING THE WORK IS DEPENDENT ON OTHER FINANCIAL FACTORS
THAT MAY BE OUTSIDE OF YOUR CONTROL. BY UNDERSTANDING YOUR TEAM’S
PERFORMANCE BASED ON HOURS, YOU WILL BE ABLE TO EXPLAIN YOUR TEAM’S
PERFORMANCE BASED ON DOLLARS ONCE YOU GAIN AN UNDERSTANDING OF THOSE
OUTSIDE INFLUENCES.

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment
C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment
C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

Accomplishment
C.1.1 – SPM

Accomplishment
C.1.2 - STD

Task C.1.1.1 –
SPM TASKS -

Month 1-2
(Work Pkg)

Task C.1.1.2 –
SPM TASKS -

Month 3-4
(Work Pkg)

Task C.1.1.3 – SPM
TASKS - Month 5-

12
(Planning Pkg)

Task C.1.1.4 – SPM
TASKS - Month 13-

24
(Planning Pkg)

Task C.1.2.1 –
STD TASKS -

Month 1-2
(Work Pkg)

Task C.1.2.2 –
STD TASKS -

Month 3-4
(Work Pkg)

Task C.1.2.3 – STD
TASKS - Month 5-

12
(Planning Pkg)

Task C.1.2.4 – STD
TASKS - Month 13-

24
(Planning Pkg)

NOTE: IMS Work
Packages must be 45

days or less in
duration!

NOTE: IMS Planning
Packages should NOT
cross calendar years!

Recommendation:
plan management as

discrete tasks vs. LOE!

Program Budget

Charge Number

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment
C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

Accomplishment
C.2.1 – SW

Metrics Lead

Accomplishment
C.2.5 – SW
Integration

Facility Support

Task C.2.1.1 –
SML TASKS -

Month 1-2
(Work Pkg)

Task C.2.1.2 –
SML TASKS -

Month 3-4
(Work Pkg)

Task C.2.1.3 –
SML TASKS -
Month 5-12

(Planning Pkg)

Task C.2.1.4 –
SML TASKS -
Month 13-24

(Planning Pkg)

Task C. 2.5.1 –
SIFS TASKS -

Month 1-2
(Work Pkg)

Task C. 2.5.2 –
SIFS TASKS -

Month 3-4
(Work Pkg)

Task C. 2.5.3 –
SIFS TASKS -

Month 5-12
(Planning Pkg)

Task C. 2.5.4 –
SIFS TASKS -
Month 13-24

(Planning Pkg)

NOTE: IMS Work
Packages must be 45

days or less in
duration!

NOTE: IMS Planning
Packages should NOT
cross calendar years!

Recommendation:
plan management as

discrete tasks vs. LOE!

Accomplishment
C.2.2 – SW

Config. Mgmt.
Support

Accomplishment
C.2.3 – SW

Integration Lead

Accomplishment
C.2.4 – POD
Build Support

Program Budget

Charge Number

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment
C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

Accomplishment
C.3.1 - POD

BUILD

Accomplishment
C.3.2 - FMK

BUILD

Accomplishment
C.3.3 - Feature

“A” Bld.

Accomplishment
C.3.4 - Feature

“B” Bld.

Accomplishment
C.3.5 - Feature

“C” Bld.

Task C.3.2.1 -
Use Case 1

Task C.3.2.3 -
Use Case N

Task C.3.5.1 -
Use Case 1

Task C.3.5.2 -
Use Case N

Task C.3.5.3 –
BLD LEAD
SUPPORT

Task C.3.2.4 –
BLD LEAD

Support

Task C.3.2.2 -
Use Case 2

Sub Task
Level 3.2.1.1

C.3.2.1.1 - Use
Case 1 (Comm /

Planning)
(Work Pkg)

Sub Task
Level 3.2.1.2

C.3.2.1.2 - Use
Case 1 (Modeling)

(Work Pkg)

Sub Task
Level 3.2.1.3

C.3.2.1.3 - Use
Case 1

(Constructing)
(Work Pkg)

Sub Task
Level 3.2.1.4

C.3.2.1.4 - Use
Case 1 (Deploying)

(Work Pkg)

Sub Task
C.3.2.4.1 – BLD
LEAD - Month 1-2

(Work Pkg)

Sub Task
C.3.2.4.2 – BLD
LEAD - Month 3-4

(Work Pkg)

Sub Task
C.3.2.1.1 - Use

Case 1 (Comm /
Planning)

(Work Pkg)

Sub Task
C.3.2.1.2 - Use

Case 1 (Modeling)
(Work Pkg)

Sub Task
C.3.2.1.3 - Use

Case 1
(Constructing)

(Work Pkg)

Sub Task
C.3.2.1.4 - Use

Case 1 (Deploying)
(Work Pkg)

Sub Task
C.3.5.1.1 - Use
Case 1 (Comm /

Planning)
(Planning Pkg)

Sub Task
C.3.5.1.2 - Use

Case 1 (Modeling)
(Planning Pkg)

Sub Task
C.3.5.1.3 - Use

Case 1
(Constructing)
(Planning Pkg)

Sub Task
C.3.5.1.4 - Use

Case 1 (Deploying)
(Planning Pkg)

Program Budget

Charge Number

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment

C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

Accomplishment
C.4.1 – TEST
POD BUILD

Accomplishment
C.4.2 - TEST
FMK BUILD

Accomplishment
C.4.3 - TEST

Feature “A” Bld.

Accomplishment
C.4.4 - TEST

Feature “B” Bld.

Accomplishment
C.4.5 - TEST

Feature “C” Bld.

Task C.4.1.1 –
Create

Integration Test
Bed

(Work Pkg)

Task C.4.1.2 –
Run Integration

Test Bed
(Work Pkg)

Task C.4.5.1 –
Run Integration

Test Bed
(Planning Pkg)

Task C.4.5.2 –
Test Feature C

(Planning Pkg)

Task C.4.5.4 –
Test Director

Support
(Planning Pkg))

Task C.4.1.3 –
Test Director

Month 1-2
(Work Pkg)

Task C.4.1.4 –
Test Director

Month 3-4
(Work Pkg)

Task C.4.5.3 –
Update

Integration Test
Bed

(Planning Pkg)

Program Budget

Charge Number

SW PROJECT PLANNING – DECOMPOSING THE WBS

Significant
Accomplishment

C.3 – SW
Development

Significant
Accomplishment

C.1 – SW
Management

Significant
Accomplishment

C.2 – SW
Support

Significant
Accomplishment
C.4 – SW Test

Significant
Accomplishment

C.5 – SW
Maintenance

C - Software
Engineering

Product B

Accomplishment
C.5.1 – FIX POD

BLD Issues

Accomplishment
C.5.2 - FIX FMK

BLD Issues

Accomplishment
C.5.3 - FIX

Feature “A” BLD
Issues

Accomplishment
C.5.4 - FIX

Feature “B” BLD
Issues

Accomplishment
C.5.5 - FIX

Feature “C” BLD
Issues

Task C.5.2.1 –
Problem Resolution

Month 1-2
(Work Pkg)

Task C.5.5.1 –
Problem

Resolution
(Planning Pkg)

Task C.5.6.1 –
In-House
Problem

Resolution
(Planning Pkg)

Accomplishment
C.5.6 – FIX In-
House System

Test Issues

Task C.5.2.2 –
Problem Resolution

Month 2-4
(Work Pkg)

Task C.5.7.1 –
Site Problem
Resolution

(Planning Pkg)

Program Budget

Charge Number

Accomplishment
C.5.7 – FIX Site

System Test
Issues

SW PROJECT PLANNING – SDP
5. CREATING A SOFTWARE DEVELOPMENT PLAN (SDP)

ASIDE FROM DEVELOPING THE SBP, THE SDP IS THE REMAINING DOCUMENT THAT IS REQUIRED AS PART OF THE
INITIAL SOFTWARE DEVELOPMENT PHASE.

THE SDP CAPTURES THE MANAGEMENT APPROACH AND ENGINEERING ENVIRONMENT EFFORT ASSOCIATED WITH
THE PROGRAM. IT IDENTIFIES:

• THE SOFTWARE ORGANIZATIONAL STRUCTURE WITH RESPECT TO THE PROGRAM,

• THE HIGH-LEVEL SOFTWARE SCHEDULE WITH KEY MILESTONES,

• THE SOFTWARE RISKS ASSOCIATED WITH THE PROPOSED DEVELOPMENT,

• THE SOFTWARE MEASUREMENT AND ANALYSIS PLAN (TAKING NEW, MODIFIED, AND REUSE DEVELOPMENT INTO
ACCOUNT),

• THE SOFTWARE CONFIGURATION MANAGEMENT PLAN (ENSURES ONLY TESTED SOFTWARE GETS CHECKED ONTO A
BUILD),

• THE SOFTWARE ENGINEERING ENVIRONMENT (IN-HOUSE LAB FACILITIES),

THE SDP ALSO CAPTURES THE TECHNICAL APPROACH TO DEVELOPING THE SOFTWARE ASSOCIATED WITH A
PROGRAM.

• THE SOFTWARE DEVELOPMENT PARADIGM THAT WILL BE FOLLOWED INCLUDING ANY STANDARDS,

• THE SOFTWARE PROCESSES THAT WILL BE FOLLOWED (THESE CAN BE SEPARATE DOCUMENTS THAT ARE REFERENCED)
AND ARTIFACTS THAT WILL BE PRODUCED,

• THE USE AND INTEGRATION OF FREE AND OPEN-SOURCE SOFTWARE (FOSS) AND COMMERCIAL OFF-THE-SHELF (COTS)
SOFTWARE,

• THE SOFTWARE BUILD PLAN (TYPICALLY SPECIFIED IN A SEPARATE DOCUMENT).

SW PROJECT PLANNING – ORGANIZATION

PROGRAM ORGANIZATIONAL STRUCTURED

THE ORGANIZATIONAL STRUCTURE OF THE PROGRAM IS TYPICALLY
DETERMINED AT THE TIME THE PROGRAM IS BID SINCE IT NEEDS TO ACCOUNT
FOR THE USE OF AN INTEGRATED PRODUCT TEAM (IPT) DEVELOPMENT
STRUCTURE VS. A NON-IPT STRUCTURE.

PROGRAM STRUCTURE HAS A DIRECT IMPACT ON YOUR ORGANIZATION’S
ABILITY TO IMPLEMENT THE ITERATIVE OR AGILE APPROACH SPECIFIED IN THE
SDP DOCUMENT.

FOR EXAMPLE, A PROGRAM STRUCTURE THAT IS ORGANIZATIONAL OR
ARCHITECTURAL BASED VS. USING AN IPT STRUCTURE IS MORE LIKELY TO
HAVE LIMITATIONS IN RECEIVING ALL OF THE BENEFITS OF THE ITERATIVE OR
AGILE APPROACH THE SW TEAM IS IMPLEMENTING AS SHOWN IN THE
DIAGRAMS BELOW.

PROGRAM ORGANIZATION STRUCTURE “A”
DISCIPLINE BASED ORGANIZATIONAL STRUCTURE - PROGRAMS AND DISCIPLINES HAVE THEIR OWN GOALS FOR SUCCESS

Program
Management

Engineering

Software
Engineering

Hardware
Engineering

Systems
Engineering

Software
Messaging

Dev.

Software

Framework
Dev.

Software
App. A-X Dev.

Software Data
Dev.

Software User
Interface Dev.

SOFTWARE ORGANIZATION STRUCTURE “A” - ARCHITECTURAL MANAGED DEVELOPMENT TEAMS HAVE
THEIR OWN GOALS FOR SUCCESS

PROGRAM ORGANIZATION STRUCTURE “B”
INTEGRATED PRODUCT TEAM ORGANIZATIONAL STRUCTURE – BALANCES PROGRAMS AND GOALS FOR SUCCESS

SOFTWARE ORGANIZATION STRUCTURE “B” – USE CASE DRIVEN DEVELOPMENT TEAMS CAN MORE
EASILY FOLLOW AN ITERATIVE AND EVOLUTIONARY PROCESS MODEL.

Program
Management

Engineering
SW Lead + HW Lead

Integrated Product
Team 1

SE + SW + HW

Integrated Product
Team 2

SE + SW + HW

Integrated Product
Team 3

SE + SW + HW

System Engr.
SE Lead

Sys. Req. Def. +
V&V

Integrated Product
Team 1 – Use Case

1
SE + SW + HW

Integrated Product
Team 1 – Use Case

2
SE + SW + HW

Integrated Product
Team 1 – Use Case

N
SE + SW + HW

Integrated Product
Team 2 – Use Case 1

SE + SW + HW

Integrated Product
Team 2 – Use Case 2

SE + SW + HW

Integrated Product
Team 2 – Use Case N

SE + SW + HW

Integrated Product
Team 3 – Use Case 1

SE + SW + HW

Integrated Product
Team 3 – Use Case 2

SE + SW + HW

Integrated Product
Team 3 – Use Case N

SE + SW + HW

SW PROJECT PLANNING – CONFIGURATION MGMT.

PROGRAM SW CONFIGURATION MANAGEMENT PLAN

THE SW CONFIGURATION MANAGEMENT PLAN DOCUMENTS HOW
SOFTWARE ARTIFACTS ARE CONTROLLED AND HOW CHANGE TO THESE
ARTIFACTS IS MANAGED THROUGHOUT THE EXECUTION OF THE PROGRAM.
THIS INCLUDES REQUIREMENTS TRACEABILITY, DESIGN DOCUMENTATION,
CODE, TEST DOCUMENTATION, SOFTWARE PROCESS DOCUMENTS, ETC.

THE SW CONFIGURATION MANAGEMENT PLAN MAY ALSO SPECIFY SPECIFIC
TOOLS USED TO CONTROL THE CONFIGURATION OF THE REQUIREMENTS
AND CODE IN PLANT AS WELL AS AT THE CUSTOMER FACILITY.

SW PROJECT PLANNING – INTEGRATION FACILITY

PROGRAM SW INTEGRATION AND TEST ENVIRONMENT

THE ONLY WAY TO ENSURE A PRODUCT WORKS AS SPECIFIED IS TO TEST IT IN
ACTUAL ENVIRONMENT IN WHICH IT WILL BE USED. UNFORTUNATE SOFTWARE
ERRORS FOUND IN THE ACTUAL DELIVERABLE ENVIRONMENT ARE THE MOST
EXPENSIVE TYPES OF ERRORS TO FIX.

THE SOONER A SW ERROR CAN BE DETECTED AND FIX DIRECTLY CORRELATES TO
COST ASSOCIATED WITH FIXING THE ERROR.

• ERRORS DISCOVERED AND FIXED DURING UNIT TEST ARE THE CHEAPEST ERROR TO FIX.

• ERRORS DISCOVERED DURING INTEGRATION/SYSTEM TESTING THAT ARE FOUND/FIXED
IN THE INTEGRATION AND TEST ENVIRONMENT END UP BEING MORE EXPENSIVE TO FIX
SINCE THEY IMPACTS A LARGER NUMBER OF INDIVIDUALS AND REQUIRES A NUMBER OF
TEST ASSETS IN THE INTEGRATION FACILITY TO VERIFY THE ISSUE WAS FIXED.
HOWEVER, THE COST OF FIXING A SOFTWARE ERROR PRIOR TO THE PRODUCT LEAVING
THE SITE IS KEY TO MINIMIZING PROGRAM COSTS FOR PROBLEM RESOLUTION.

SW PROJECT PLANNING – INTEGRATION FACILITY

HENCE IT IS CRITICAL THAT A PLAN IS PUT IN PLACE DURING PROGRAM
STARTUP THAT CREATES AN INTEGRATION TEST ENVIRONMENT THAT
ACCURATELY REFLECTS THE TARGET ENVIRONMENT AND HAS ENOUGH
EQUIPMENT TO SUPPORT THE DEVELOPMENT SCHEDULE DEFINED BY THE
PROGRAM.

• HARDWARE COMPONENTS THAT NEED TO BE CONSIDERED INCLUDED:
PHYSICAL SPACE, NUMBER OF WORKSTATIONS AND SERVERS THAT COMPRISE
A STRING, NUMBER OF STRINGS THAT COMPRISE A SITE, NUMBER OF SITES
AT THE TARGET DOMAIN.

• SCHEDULING COMPONENTS THAT NEED TO BE CONSIDERED INCLUDES
AVERAGE AND PEEK UTILIZATION OF THE EQUIPMENT.

SW PROJECT PLANNING – SW PROCESSES
SOFTWARE PROCESS THAT WILL BE
FOLLOWED DURING THE EXECUTION OF
THE PROGRAM CAN EITHER BE DIRECTLY
CONTAINED IN THE SDP OR DEFINED IN
SEPARATE PROGRAM DOCUMENTS.

EXAMPLES OF SOFTWARE PROCESS
THAT WOULD BE REFERENCED WITHIN
THE SDP ARE HIGHLIGHTED IN THE
DIAGRAM TO THE RIGHT.

NOTE: SOMETIMES IT IS CHEAPER TO INCLUDE
A COTS PRODUCT AS PART OF THE SOLUTION
TO THE SYSTEM BEING DESIGN OR TO USE A
FOSS PRODUCT. IF THAT SITUATION, IT IS
IMPORTANT TO ADDRESS HOW THE COTS/FOSS
PRODUCT WILL BE INTEGRATED, TESTED, AND
CONTROLLED AS PART OF THE SOFTWARE
DEVELOPMENT PLAN.

SOFTWARE ENGINEERING
DISCIPLINE

SOFTWARE ORGANIZATION

KEY PROGRAM PROCESSES:
1. SOFTWARE DEVELOPMENT PLAN (SDP),
2. SOFTWARE BUILD PLAN (SBP),
3. SOFTWARE PRELIMINARY AND DETAIL
DESIGN,
4. SOFTWARE CODE & UNIT TEST PLAN,
5. SOFTWARE CODING STANDARDS (LANGUAGE
SPECIFIC),
6. SOFTWARE INTEGRATION PLAN,
7. SOFTWARE VERIFICATION PLAN,
8. SOFTWARE CONFIGURATION MANAGEMENT
PLAN

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN,
EIGHTH EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY
PEARSON EDUCATION , INC.

MITRE SYSTEMS ENGINEERING GUIDE
HTTPS://WWW.MITRE.ORG/PUBLICATIONS/SYSTEMS-ENGINEERING-GUIDE/ACQUISITION-SYSTEM
S-ENGINEERING/ACQUISITION-PROGRAM-PLANNING/INTEGRATED-MASTER-SCHEDULE-IMSINTEG
RATED-MASTER-PLAN-IMP-APPLICATION

PRINCIPLES OF SOFTWARE ENGINEERING MANAGEMENT, BY TOM GILB,
COPYRIGHT 1988 BY ADDISON-WESLEY PUBLISHING COMPANY, NEW YORK,
NY

SOFTWARE ENGINEERING, A PRACTITIONER’S APPROACH, EIGHTH EDITION,
BY ROGER S. PRESSMAN AND BRUCE R. MAXIM, COPYRIGHT 2015 BY
MCGRAW HILL, NEW YORK, NY

https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/acquisition-program-planning/integrated-master-schedule-imsintegrated-master-plan-imp-application
https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/acquisition-program-planning/integrated-master-schedule-imsintegrated-master-plan-imp-application
https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/acquisition-program-planning/integrated-master-schedule-imsintegrated-master-plan-imp-application

CS466 – SOFTWARE
PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER

2)
A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 3: ITERATIVE & EVOLUTIONARY METHODS

BY: JOSEPH MARTINAZZI

ITERATIVE (INCREMENTAL) DEVELOPMENT

ITERATIVE DEVELOPMENT LIFECYCLE MODEL

• AN ITERATIVE APPROACH TO DEVELOPING SOFTWARE IS
WHERE REQUIREMENT ANALYSIS/SPECIFICATION,
DESIGN, CODE & TEST OCCUR IN MULTIPLE ITERATIONS
OVER THE LIFECYCLE OF THE PROGRAM.

Quick Planning

(Requirement
Analysis /Specification)

Quick Modeling
(Preliminary and
Detailed Design)

Construction (Code &
Unit Test

Feature/Capability)

Deployment
(Deployment of Feature

to Integrated SW
Baseline) – System

Integration

Communicating
(Feedback from Prior

Iteration)

Quick Planning

(Requirement
Analysis /Specification)

Quick Modeling
(Preliminary and
Detailed Design)

Construction (Code &
Unit Test

Feature/Capability)

Deployment
(Deployment of Feature

to Integrated SW
Baseline) – System

Integration

Communicating
(Feedback from Prior

Iteration)

Quick Planning

(Requirement
Analysis /Specification)

Quick Modeling
(Preliminary and
Detailed Design)

Construction (Code &
Unit Test

Feature/Capability)

Deployment
(Deployment of

SYSTEM to Customer) –
Customer Sell-Off

Communicating
(Feedback from

Customer)

Build 1 – FMK → Build 2 – Capabilities → Build 3 – Capabilities → Build X – Release to
Customer

System Capabilities grow
incrementally.

ITERATIVE (INCREMENTAL) DEVELOPMENT

ITERATIVE DEVELOPMENT LIFECYCLE MODEL

• THE GOAL OF EACH ITERATION IS TO DELIVER TESTED CODE
CONTAINING CAPABILITIES/FEATURES THAT ARE BUILT UP
SEQUENTIALLY IN AN INTEGRATED SOFTWARE BASELINE OVER
TIME.

• THIS APPROACH ENABLES:
• MULTIPLE TEAMS OF SOFTWARE DEVELOPERS TO CONTRIBUTE TESTED CODE

TO AN INTEGRATED AND PARTIALLY TESTED STABLE BASELINE.

• RUN REGRESSION TEST AGAINST THE BASELINE TO ENSURE BREAKAGE
DOESN’T OCCUR.

• TEST NEW CAPABILITIES/FEATURES ADDED TO THE BASELINE IN A
CONTROLLED ENVIRONMENT.

• DELIVER THE BASELINE TO OTHER TEAMS ON THE PROGRAM TO PERFORM
INTERNAL TESTING OF REQUIREMENTS AND PERFORMANCE.

• ENABLE FEATURES TO INCREMENTALLY BE TESTED BETWEEN MULTI-
SUBSYSTEMS ON A PROGRAM.

ITERATIVE (INCREMENTAL) DEVELOPMENT
ITERATIVE DEVELOPMENT

• REQUIREMENTS NEEDED TO
SUPPORT THE ITERATION ARE
“FROZEN” PRIOR TO THE
ITERATION STARTS

• PROJECTS TYPICALLY HAVE AT
LEAST THREE INTERNAL
ITERATIONS PRIOR TO THE FINAL
ITERATION THAT IS RELEASED TO
THE CUSTOMER.

• ITERATIONS CAN LAST FROM ONE
WEEK IN DURATION TO SIX MONTHS
IN DURATION ON PROJECTS THAT
SPAN MULTIPLE YEARS. NOTE: THE
AUTHOR STATES THAT THE RECOMMEND
LENGTH OF AN ITERATION IS BETWEEN 1-6
WEEKS IN MODERN ITERATIVE METHODS.

• FEATURES/CAPABILITIES THAT DO
NOT HAVE A DEPENDENCY ON A
PRIOR ITERATION CAN EXECUTE IN
PARALLEL.

POD - Build FMK - Build Capability A Capability B Final Build
0

5

10

15

20

25

30

35

40

45

50
Chart Title

Requirements Design
Code & Unit Test Incremental Build

Amount of
requirement

specification, design,
code & test differ

based on the iteration.

The author compares an iteration to a self-contained mini-project containing production-quality capabilities.

ITERATIVE PLANNING
RISK-DRIVEN ITERATIVE DEVELOPMENT
A RISK DRIVEN APPROACH TO ITERATIVE DEVELOPMENT IS BASED ON:

IDENTIFYING THE MOST CHALLENGING OR RISKY REQUIREMENTS TO IMPLEMENT IN EARLY ITERATIONS.

THESE REQUIREMENTS TYPICALLY INVOLVE INCORPORATING NEW TECHNOLOGY, PERFORMANCE
REQUIREMENTS, OR OTHER RISKS IDENTIFIED DURING THE INITIAL PLANNING STAGE OF THE PROGRAM.

EXAMPLE: AN EXAMPLE PROVIDED BY THE AUTHOR INVOLVED 2 REQUIREMENTS FOR A SYSTEM:

1. THE WEBPAGES TO BE GREEN AND

2. THE SYSTEM SHALL BE ABLE TO HANDLE 5,000 SIMULTANEOUS TRANSACTIONS (WHICH SHOULD BE IMPLEMENTED 1ST)

CLIENT-DRIVEN ITERATIVE DEVELOPMENT
A CLIENT DRIVEN APPROACH TO ITERATIVE DEVELOPMENT IS BASED ON THE CUSTOMER DEFINING
THE FEATURES/CAPABILITIES CONTAINED IN THE NEXT ITERATION.

ADVANTAGE OF THIS APPROACH INCLUDE:

• CUSTOMER PRIORITIZES THE FEATURES/CAPABILITIES THAT ARE THE MOST IMPORTANT TO THEM FOR EARLY
ITERATIONS.

• THE APPROACH CAN BE ADAPTIVE FOR EACH ITERATION BASED ON INSIGHT THE CUSTOMER GAINS DURING
THE PREVIOUS ITERATIVE DEVELOPMENT CYCLE.

TIMEBOXED ITERATIVE DEVELOPMENT

TIMEBOXING

• IS AN APPROACH IN WHICH THE ITERATION RELEASE DATE IS FIXED.

• THIS APPROACH CAN APPLY TO ONE OR ALL ITERATIONS WITHIN A
PROGRAM, HOWEVER THE TIMEBOX LENGTH FOR EACH ITERATION
DOES NOT NEED TO BE EQUAL.

• IF FEATURES/CAPABILITIES ASSOCIATED WITH THE ITERATION CAN
NOT BE MET WITHIN THE SCHEDULED COMPLETION DATE OF THE
ITERATION (TIMEBOX), THEN THE FUNCTIONALITY WITHIN THE
ITERATION IS REDUCED (SCOPE MOVED TO PROGRAM BACKLOG).

• MOST ITERATIVE INCREMENTAL DEVELOPMENT (IID) METHODS
RECOMMEND TIMEBOXING OF 1-6 WEEKS IN DURATION.

• THREE-MONTH TO SIX-MONTH TIMEBOXING HAS BEEN
SUCCESSFULLY EXECUTED ON LARGE PROGRAMS CONTAINING
HUNDRED OF SOFTWARE DEVELOPERS!

TIMEBOXED ITERATIVE DEVELOPMENT

THE PROBABILITY THAT AN ITERATIVE DEVELOPMENT APPROACH WILL BE SUCCESSFUL IS
DETERMINED BY FOUR VARIABLES THAT IMPACT A PROGRAM: TIME, SCOPE, RESOURCES (STAFF
AND LAB EQUIPMENT), QUALITY.

• TIMEBOXING REMOVES THE VARIABLE OF TIME.

• PROCESS REMOVES THE VARIABLE OF QUALITY.

• THE IPTL/SPM NEEDS TO PREVENT EXTERNAL STAKEHOLDERS FROM CHANGING EITHER THE SCOPE
OR THE RESOURCES ALLOCATED TO THE ITERATION ONCE IT BEGINS.

• THE TEAM CAN DE-SCOPE A TASK IF IT CAN NOT FIT WITHIN AN ITERATION’S TIMEBOX ONLY WITH
THE APPROVAL OF THE IPTL/SPM.

ALTHOUGH TIMEBOXING SHOULD NOT BE USED TO HAVE SOFTWARE DEVELOPERS WORK LONGER HOURS TO
HIT A PROJECT DEADLINE, IT MAY BE NECESSARY IN SOME CASES BASED ON THE IMPACT TO THE OVERALL
PROGRAM.

ALTHOUGH IT IS OK TO PUSH FEATURES/CAPABILITIES TO THE NEXT ITERATION OR TO THE PRODUCT BACKLOG,
IT IS NECESSARY TO UNDERSTAND

• TECHNICAL DEPENDENCIES (IF THIS FEATURE IS MOVED TO A LATER ITERATION, WHAT SCHEDULE/COST
IMPACT WILL THIS HAVE ON OTHER FEATURES/CAPABILITIES BEING DEVELOPED IN FUTURE INCREMENTS),

• SCHEDULE DEPENDENCIES (BY MOVING THIS FEATURE TO EITHER A LATER SPRINT OR TO THE PRODUCT
BACKLOG, WILL THERE BE A RESOURCE CONFLICT ON A LATER DEVELOPMENT ACTIVITY), AND

• COST DEPENDENCIES (WILL THE TEAM COMPLETE THE CURRENT ITERATION WITHIN COST, OR ARE THEY
PUSHING A COST-OVER RUN TO THE FUTURE). FIRM-FIXED PRICE (FFP) PROGRAM VS. COST PLUS PROGRAM

EVOLUTIONARY AND ADAPTIVE DEVELOPMENT

EVOLUTIONARY ITERATIVE DEVELOPMENT
IMPLIES THAT PROGRAM REQUIREMENTS, ESTIMATES, AND
SOLUTIONS EVOLVE OR ARE REFINED OVER TIME VS. HAVING
ALL REQUIREMENTS DEVELOPED UP FRONT AND FROZEN
THROUGH THE COURSE OF THE ITERATIVE DEVELOPMENT
LIFECYCLE.

FOCUS IS ON HIGH RISK, PERFORMANCE AND USABILITY
REQUIREMENTS UP FRONT.

RECOMMENDATION IS TO HAVE WORKSHOPS INCLUDING SYSTEMS
AND SOFTWARE ENGINEERS TO FLUSH OUT THE DETAILS.

ADAPTIVE DEVELOPMENT
IMPLIES THAT DEVELOPMENT IS ADAPTED FOR EACH ITERATION
BASED ON FEEDBACK OR INSIGHT GAINED DURING THE
PREVIOUS ITERATIVE DEVELOPMENT CYCLE.

DOESN’T IMPLY THAT THERE ARE NO COST AND NO SCHEDULE
BOUNDARIES, JUST THAT IT IS HARDER TO PREDICT UP FRONT
AND CAN BE BETTER REVISED IN FURTHER ITERATIONS.

ROLLING WAVE PLANNING IS A WAY TO ACCOMPLISH THIS BY
CREATING TASKS IN THE IMS THAT ARE DETAILED PLANNED AS WORK
PACKAGES DURING THE NEXT 6 MONTHS OF THE PROGRAM AND THE
REMAINING TASKS ARE PLANNED AT A HIGHER LEVEL IN A PLANNING
PACKAGE.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

0%

20%

40%

60%

80%

100%

120%

Evolutionary Requirement &
SW Development

Requirements Software

INCREMENTAL AND EVOLUTIONARY DELIVERY

INCREMENTAL DELIVERY
IS THE PROCESS OF DELIVERING A SYSTEM TO THE CUSTOMER IN A SERIES OF
EXPANDED CAPABILITIES/FEATURES. TIME BETWEEN AN INCREMENTAL DELIVERY
CAN RANGE BETWEEN 3-12 MONTHS.

INCREMENTAL PRODUCT DELIVERY IS NOT THE SAME AS ITERATIVE DEVELOPMENT.
EACH INCREMENTAL DELIVERY CAN BE COMPOSED OF MULTIPLE ITERATIVE
DEVELOPMENT CYCLES.

EVOLUTIONARY DELIVERY
IS SIMILAR TO INCREMENTAL DELIVERY EXCEPT IT CAPTURES CUSTOMER
FEEDBACK AND PROVIDES THAT AS GUIDANCE INTO THE NEXT DELIVERY.

CASE STUDY (THE MOST COMMON MISTAKES?)

COMPANY X-Y-Z ACKNOWLEDGES THAT THEY HAVE CHOSEN TO USE AN ITERATIVE DEVELOPMENT
METHODOLOGY SINCE THE WATERFALL LIFECYCLE MODEL IS NOT VERY SUCCESSFUL. HOWEVER,
THEY STATE THAT THEY WILL NOT BEGIN SOFTWARE DEVELOPMENT UNTIL THEY COMPLETE THE USE
CASE ANALYSIS, INITIAL IMP AND IMS, AND THE SYSTEM LEVEL REQUIREMENT SPECIFICATIONS.
ALTHOUGH THE AUTHOR STATES THAT THIS IS ONE OF THE MOST COMMON MISTAKES THAT NEW ITERATIVE AND AGILE METHOD
ADOPTERS MAKE. I BELIEVE HIS STATEMENT IS TOO GENERIC AND SHOULD SPECIFICALLY FOCUS ON THE FACT THAT NOT ALL
REQUIREMENT SPECIFICATIONS NEED TO BE COMPLETED PRIOR TO BEGINNING THE SOFTWARE DEVELOPMENT EFFORT.

AS DISCUSSED DURING LECTURE 2 – THERE ARE MANY ORGANIZATIONAL AND PROGRAMMATIC PROCESSES THAT DETERMINE
YOUR ABILITY TO EFFECTIVELY ADAPT ITERATIVE/AGILE METHODOLOGY INTO THE SOFTWARE DEVELOPMENT MODEL USED ON A
PROGRAM.

LARGE PROGRAMS THAT SPAN MULTIPLE YEARS AND/OR INCLUDE MULTIPLE SUBSYSTEMS NEED SYSTEM LEVEL
REQUIREMENTS TO BE WRITTEN TO A LEVEL THAT CAN BE ALLOCATED TO EACH SUB-SYSTEM. ESPECIALLY HIGH RISK,
PERFORMANCE, USABILITY AND INTERFACE REQUIREMENTS PRIOR TO STARTING SOFTWARE DEVELOPMENT IN THOSE AREAS.

A FIRM-FIXED PRICE (FFP) CONTRACT IS A BINDING AGREEMENT BETWEEN YOUR COMPANY AND YOUR CUSTOMER THAT YOU
WILL DELIVER THE REQUIREMENTS SPECIFIED IN THE CONTRACT WITHIN A SPECIFIED SCHEDULE AND FOR A SPECIFIED COST.
THE CONTRACT MAY EVEN SPECIFY THAT YOU WILL CONDUCT A PRELIMINARY DESIGN REVIEW (PDR) DURING MONTH 3 OF
THE CONTRACT AND A DETAILED DESIGN REVIEW DURING MONTH 9 OF THE CONTRACT WHICH WILL ULTIMATELY DRIVE WHAT
THE FOCUS IS DURING THE EARLY ITERATIONS OF THE DEVELOPMENT LIFECYCLE.

IN ADDITION, CUSTOMER INVOLVEMENT DURING ITERATIVE DEVELOPMENT MAY NOT BE DESIRABLE IF THE CONTRACT IS FIRM-
FIXED PRICE AND THERE IS NO CONTRACTUAL MECHANISM TO ELIMINATE LESS IMPORTANT REQUIREMENTS SPECIFIED IN THE
CONTRACT DURING THE ITERATIVE DEVELOPMENT LIFECYCLE.

REMEMBER THE ONLY WAY TO MANAGE THE PROGRAM SCHEDULE IS TO HAVE A DETAILED IMS THAT CRITICAL PATH ANALYSIS
CAN BE USED TO IDENTIFY WHAT IS DRIVING THE PROGRAM SO YOU CAN MANAGE YOUR SCHEDULE BUFFER. ALSO DETAILED
SOFTWARE PLANNING ENABLES YOU TO CREATE AN INITIAL COST BASIS AT THE BUILD OR ITERATION LEVEL THAT CAN BE
REFINED AS YOU GO.

SPECIFIC ITERATIVE & EVOLUTIONARY METHODS

UNIFIED PROCESS (UP)
UP OR RATIONAL UNIFIED PROCESS IS THE MOST WIDELY USED ITERATIVE APPROACH ACROSS
THOUSANDS OF ORGANIZATIONS WORLDWIDE.

IT WAS DEVELOPED IN THE MID-1990’S WITH INPUTS FROM MANY EXPERIENCED SYSTEM
ARCHITECTS AND DESIGNERS.

ORGANIZATIONS THAT USE THE UP METHOD TYPICALLY FOCUS ON THE CORE ARCHITECTURE OF A
SYSTEM AND HIGH-RISK AREAS OF DEVELOPMENT IN EARLY ITERATIONS TO MINIMIZE RISK TO THE
PROGRAM.

EVOLUTIONARY (EVO)
EVOLUTIONARY PROCESS WAS DEVELOPED IN THE 1960’S WITH THE FOCUS BEING SHORT
ITERATIONS OF 1-2 WEEKS IN DURATION

EVO USES ADAPTIVE PLANNING AND FOCUSES ON THE HIGHEST VALUE-TO-COST RATION ITEMS
FIRST.

EVO ALSO PROMOTES THE USE OF UNAMBIGUOUS AND QUALITY REQUIREMENTS THAT CAN BE
QUANTIFIED OR MEASURED (IN OTHER WORDS REQUIREMENTS MUST BE TESTABLE).

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN,
EIGHTH EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY
PEARSON EDUCATION , INC.

CS466 – SOFTWARE
PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER

3)
A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 4: AGILE METHODS

BY: JOSEPH MARTINAZZI

AGILE DEVELOPMENT

AGILE DEVELOPMENT HAS A MOTTO “EMBRACE CHANGE”

• AGILE DEVELOPMENT METHODS ARE A SUBSET OF ITERATIVE AND
EVOLUTIONARY DEVELOPMENT METHODS.

• ALTHOUGH AGILE METHODS VARY IN STYLE, THEY ALL EMPLOY
SHORT TIMEBOXED ITERATIONS WITH EVOLUTIONARY PLANNING
TECHNIQUES.

• AGILE DEVELOPMENT EMPHASIZES SIMPLICITY, DIRECT
COMMUNICATIONS, SELF-DIRECTED TEAMS, AND WORKING CODE.

A SCRUM EXAMPLE: INVOLVES SELF-DIRECTED TEAMS WORKING IN A COMMON PROJECT
ROOM. EACH TEAM COORDINATES ACTIVITIES AND PROGRESS VIA DAILY STANDUP MEETINGS
IN WHICH EACH TEAM MEMBER IS HELD ACCOUNTABLE BY RESPONDING TO A SET LIST OF
QUESTIONS.

AN XP EXAMPLE: INVOLVES SELF-DIRECTED TEAMS CONTAINING A DEDICATED SE TO
EXPLAIN/DECOMPOSE REQUIREMENTS TO GROUPS OF PAIRED-PROGRAMMERS WORKING IN A
COMMON ROOM.

CLASSIFICATION OF METHODS

AGILE METHODS ARE CLASSIFIED BASED ON “CEREMONY” AND “CYCLES”.
CEREMONY – IS THE AMOUNT OF DOCUMENTATION, FORMAL STEPS, REVIEWS, ETC.

CYCLES – IS THE NUMBER AND LENGTH OF ITERATIONS.

Unified Process (UP)

 XP

 SCRUM

EVO

Many Iterations

Strict Waterfall
(sequential)

Documents
Formal Steps

Few Documents
Few Steps

SCRUM Iterations =
Exactly 4 Weeks.
However, SCRUM

doesn’t specify how
much or how little

ceremony.

C
y
cl

e
s

Ceremony

THE AGILE MANIFESTO
IN 2001 A GROUP OF INDIVIDUALS DEFINED THE AGILE MANIFESTO AND A SET OF
PRINCIPLES THAT AGILE TECHNIQUES SHOULD TAKE INTO CONSIDERATION.

WWW.AGILEALLIANCE.COM

THE AGILE PRINCIPLES
IN 2001 A GROUP OF INDIVIDUALS DEFINED THE AGILE MANIFESTO AND A SET OF
PRINCIPLES THAT AGILE TECHNIQUES SHOULD TAKE INTO CONSIDERATION.

WWW.AGILEALLIANCE.COM

AGILE PROJECT MANAGEMENT
THE JOB OF THE AGILE PROJECT MANAGER IS TO PROMOTE THE VISION BY HAVING
OPEN COMMUNICATION AND AVOIDING (MINIMIZING) COMMAND AND CONTROL.

JIM HIGHSMITH SUMMARIZES 9 PRINCIPLES FOR AGILE PROJECT MANAGEMENT.

HIGHSMITH, J. 2002. AGILE SOFTWARE DEVELOPMENT ECOSYSTEMS. ADDISON-WESLEY

RECOMMENDATIONS PROJECT MANAGEMENT
AUGUSTINE AND WOODCOCK, RECOMMEND THE FOLLOWING 6
PRACTICES FOR AGILE PROJECTS.

AUGUSTINE, S. AND WOODCOCK. S. 2002. “AGILE PROJECT MANAGEMENT: EMERGENT ORDER THROUGH VISIONARY LEADERSHIP.” CC PACE SYSTEMS. JULY 2002.

AGILE PROJECT MANAGEMENT

THE AUTHOR STATES THAT THE ENTIRE TEAM NEEDS TO
PARTICIPATE IN CONTROL AND PLANNING ON AGILE PROJECTS.
THE MANAGER DOESN’T CREATE THE WBS, DEFINE THE
SCHEDULE, AND ESTABLISH BUDGETS, BUT THE TEAM DOES!

ALTHOUGH THIS MAY WORK FOR SMALL TEAMS IN WHICH COST
AND SCHEDULE DO NOT MATTER, IT WILL NOT WORK FOR LARGE
SCALE SOFTWARE DEVELOPMENT EFFORTS OR FIRM FIXED PRICE
CONTRACTS.

REMEMBER THE IMP, A HIGH-LEVEL IMS AND THE WBS
STRUCTURE ARE TYPICALLY CONTAINED IN A COMPANY’S
PROPOSAL IN RESPONSE TO A CUSTOMER’S RFP.

AGILE PROJECT MANAGEMENT

SO, DOES THAT MEAN AGILE DEVELOPMENT SHOULD NOT BE USED ON
A LARGE-SCALE SOFTWARE DEVELOPMENT EFFORT? ABSOLUTELY NOT!

THE TEAM CAN STILL PLAN HOW THEY

• DEVELOP THE USE CASE INCLUDING DEFINING THE BACKLOG, AND

• VALIDATE THE BUDGET ALLOCATED TO THE USE CASE.

THE MANAGER’S JOB IS TO:

• DETERMINER THE SIZE OF THE TEAM NEEDED TO COMPLETE THE WORK
WITHIN THE TIMEBOX,

• COMMUNICATE WITH THE TEAM IN ORDER TO UNDERSTAND THEIR ISSUES,

• REMOVE ROADBLOCKS IMPEDING THE TEAM’S PROGRESS,

• VALUE AGILE PRINCIPLES BY FEEDING BACK RECOMMENDATIONS FROM THE
TEAM TO STREAM-LINE PROCESS, REMOVE ROADBLOCKS, ETC., AND

• BECOME CAPTAIN AMERICA AND SHIELD THE TEAM FROM OUTSIDE
INFLUENCES.

AGILE PROJECT DEVELOPMENT

EMBRACE CHANGE
THE AGILE PRIME DIRECTIVE IS TO EMBRACE CHANGE BY BEING ADAPTIVE.

EMBRACE COMMUNICATIONS AND FEEDBACK
AGILE DEVELOPMENT STRIVES TO INCREASE DAILY FACE-TO-FACE COMMUNICATION THROUGH DAILY
MEETINGS (SCRUM) OR BY HAVING A CUSTOMER PRESENT IN THE COMMON PROJECT ROOM (XP).

AGILE DEVELOPMENT IS CONSTANTLY ADAPTING BY PROVIDING DEMOS TO GET CUSTOMER FEEDBACK ON
PRODUCT DEVELOPMENT AND TEAM FEEDBACK ON WHAT WORKS AND WHAT DOESN’T WORK (PROCESS).

PROGRAMMING AS IF PEOPLE MATTERED
A HAPPY TEAM IS MORE PRODUCTIVE WHICH RESULTS IN SUSTAINABLE DEVELOPMENT

MAINTAIN A WORK/LIFE BALANCE AND MINIMIZE OVERTIME

KNOWLEDGE AND WORK HABITS PLAY A SIGNIFICANT ROLE IN AN INDIVIDUAL'S PRODUCTIVITY

MENTOR NEW TEAM MEMBERS

SIMPLICITY IS A KEY TO SUCCESS
DO THINGS THE SIMPLEST WAY POSSIBLE, AVOID HIGH TECH SOLUTIONS IF POSSIBLE.

AGILE PROJECT DEVELOPMENT

EMPIRICAL VS. DEFINED
(PRESCRIPTIVE) PROCESS

THE AUTHOR STATES THAT DEFINED
PROCESSES ARE SUITABLE FOR
PREDICTABLE MANUFACTURING
DOMAINS AND THAT EMPIRICAL
PROCESS IS MORE FOR AGILE
DEVELOPMENT. HOWEVER, HE ALSO
STATES THAT SCRUM DOESN’T
SPECIFY THE AMOUNT OF CEREMONY.

A DEFINED PROCESS – HAS MANY
PREDEFINED AND SEQUENTIAL
ACTIVITIES.

AN EMPIRICAL PROCESS – ARE BASED
ON FREQUENCY MEASUREMENT AND
DYNAMIC RESPONSES TO VARIABLE
EVENTS (E.G. , AGILE PRINCIPLES 12 & 13).

Unified
Process (UP)

 XP

 SCRUM

EVO
Many
Iterations

Strict Waterfall
(sequential)

Documents
Formal Steps

Few Documents
Few Steps

SCRUM
doesn’t

specify how
much or
how little
ceremony.

C
y
cl

e
s

Ceremony

SPECIFIC AGILE METHODS

SCRUM
SCRUM EMPHASIZES SELF-ORGANIZED TEAMS, WITH DAILY STANDUP MEETINGS
(COMMUNICATION/FEEDBACK), AND DAILY TEAM MEASUREMENT (PEER PRESSURE TO
DRIVE PERFORMANCE).

SCRUM ITERATIONS ARE 4 WEEKS IN DURATION, WITH A DEMO TO EXTERNAL
STAKEHOLDERS AT THE END OF THE ITERATION.

XP
XP EMPHASIZES COLLABORATION (VIA PEER PROGRAMMING, TEAM WORKING IN A
COMMON PROJECT ROOM), CONSTANT REFACTORING OF THE CODE, AND TEST-
DRIVEN DEVELOPMENT (PRACTICE OF DEVELOPING TEST CASES PRIOR TO
DEVELOPING THE CODE).

IT IS FOUNDED ON 4 VALUES: COMMUNICATION, SIMPLICITY, FEEDBACK, AND
COURAGE.

CRYSTAL FAMILY OF AGILE METHODS
DEVELOPED BY ALISTAIR COCKBURN

DEFINES PROJECT COMPLEXITY BASED ON THE CRITICALITY OF THE END-PRODUCT AND SIZE OF
STAFF REQUIRED TO COMPLETE THE PROJECT.

PROCESS CEREMONY (DEFINED STEPS, DOCUMENTATION, REVIEWS, ETC.) INCREASE BASED ON
THESE FACTORS.

DEVELOPED A CLASSIFICATION MODEL TO ASSIST IN SCALING PROGRAMS.
AN E6 EQUATES TO A PROJECT REQUIRING A STAFF OF 1-6 INDIVIDUALS AND IN WHICH A FAILURE WOULD RESULT IN A
LOSS OF ESSENTIAL MONEY.

AN L100 EQUATES TO A PROJECT REQUIRING A STAFF OF 41-100 INDIVIDUALS AND IN WHICH A FAILURE WOULD RESULT
IN A LOSS OF LIFE!

This classification
model is used to

identify
methodologies

best suited for UP,
SCRUM, XP, and/or

Evo process
models.

Life-Critical

Company Fails

Lost Profits

Annoyance

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN,
EIGHTH EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY
PEARSON EDUCATION , INC.

CS466 – SOFTWARE PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTERS 5&4)

A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 5: MOTIVATION & AN AGILE CASE STUDY

BY: JOSEPH MARTINAZZI

THE FACTS OF CHANGE ON A SW PROJECT
THE FOLLOWING GRAPH IS BASED ON
RESULTS FROM MULTIPLE LARGE-SCALE
SOFTWARE DEVELOPMENT PROJECTS.
[JONES97]

• IT ILLUSTRATES THAT AS THE
COMPLEXITY OF THE PROJECT
INCREASES (FUNCTION POINTS) THE
AMOUNT OF REQUIREMENT CHANGE
(OR CREEP) ALSO INCREASES.

• MEDIUM SIZE PROJECTS HAVE A
CHANGE RATE OF 25%

• LARGE SIZE PROJECTS HAVE A CHANGE
RATE OF 35%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Project Size in Function
Points

THIS ENFORCES THE CONCEPT THAT AN ITERATIVE LIFECYCLE MODEL HAS A
BETTER CHANCE OF SUCCESS THAN A SEQUENTIAL LIFECYCLE MODEL SINCE IT
CAN ADAPT BETTER TO CHANGING REQUIREMENTS, FOCUSES ON ARCHITECTURE
AND HIGH RISK REQUIREMENTS EARLY, HAS A BETTER PRODUCTIVITY RATE, AND
A PRODUCES A HIGHER QUALITY PRODUCT (ONE WITH FEWER DEFECTS).

Typical SW project
experiences a 25%

% change rate.

KEY MOTIVATIONS FOR ITERATIVE
DEVELOPMENT

Iterative life-cycle models compared to sequential life-cycle models

The iterative life-cycle model is lower risk compared to the waterfall life-cycle model.

The iterative life-cycle model is designed for early risk mitigation and discovery compared to the waterfall life-cycle model.

The iterative life-cycle model supports the high-change nature of software development compared to the waterfall life-cycle model.

The iterative life-cycle model builds team and customer confidence as production code is incrementally released compared to the waterfall life-cycle model.

The iterative life-cycle model provides opportunity to demo the system to other potential customers compared to the waterfall life-cycle model.

The iterative life-cycle model provides more relevant project tracking compared to the waterfall life-cycle model.

The iterative life-cycle model provides a higher quality product with less defects compared to the waterfall life-cycle model.

The iterative life-cycle model provides a higher probability that the final product will be want the customer wants compared to the waterfall life-cycle model.

The iterative life-cycle model better supports the concept of continual process improvement compared to the waterfall life-cycle model.

The iterative life-cycle model requires more customer engagement, resulting a better probability of success compared to the waterfall life-cycle model.

KEY MOTIVATION FOR TIMEBOXING

• THE PRACTICE OF TIMEBOXING INCREASES PRODUCTIVITY AS A RESULT OF
FOCUSING THE TEAM ON THE END DATE OF THE TIMEBOX. THE AUTHOR
STATES THAT TIMEBOXING MAY BE VIEWED AS AN ANTIDOTE TO
PARKINSON’S LAW: “WORK EXPANDS SO AS TO FILL THE TIME AVAILABLE
FOR ITS COMPLETION.” [PARKINSON58]

• ANOTHER BENEFIT OF TIMEBOXING ITERATIONS AS WELL AS THE ENTIRE
PROJECT IS BECAUSE PEOPLE REMEMBER SLIPPED DATES, BUT NOT SLIPPED
FEATURES. EVERYONE WILL VIEW A PROJECT THAT SLIPS 3 MONTHS
HAVING 100% OF THE FUNCTIONAL AS A “FAILURE”, HOWEVER THE
PERCEPTION OF A PROJECT THAT DELIVERS 75% OF THE FUNCTIONAL ON
TIME MAY BE CONSIDERED A SUCCESS IN SOME CASES (E.G., WITH
CUSTOMER BUY-IN)

• ANOTHER BENEFIT OF TIMEBOXING IS IT FOCUSES THE TEAM ON TACKLING
SMALL LEVELS OF COMPLEXITY WITHIN A SHORT PERIOD OF TIME.

• ANOTHER BENEFIT OF TIMEBOXING IS IT ENABLES EARLY FORCING OF
DIFFICULT DECISIONS AND TRADE-OFFS.

MEETING THE REQUIREMENTS CHALLENGE ITERATIVELY

IN A STUDY OF OVER 8,000 SOFTWARE PROJECTS, 37% OF
THE FACTORS ON CHALLENGED PROGRAMS RELATED TO
REQUIREMENTS AS SHOWN IN THE GRAPH ON THE RIGHT
(POOR USER INPUTS, INCOMPLETE REQUIREMENTS,
CHALLENGING REQUIREMENTS). [STANDISH94]

IN A STUDY OF FAILURE FACTORS OF OVER 1,000
SOFTWARE PROJECTS, 82% OF THE PROJECTS SITED
REQUIREMENTS AS THE NUMBER 1 PROBLEM. [THOMAS01]

VARIOUS OTHER STUDIES SUPPORT THE FACT THAT
REQUIREMENT CREEP IS A LARGE CONTRIBUTOR TO
PROJECT FAILURE.

13%

12%

12%

7%
6%

50%

Factors on Challenged
Projects

Poor User Inputs

Incomplete Reqs.

Challenging Reqs.

Poor Tech. Skills

Poor Staffing

Other

PROPONENTS OF THE WATERFALL METHOD – TYPICALLY POINT TO THIS REASON AS WHY
IT IS ESSENTIAL TO FREEZE REQUIREMENT DEVELOPMENT UP-FRONT.

HOWEVER, THIS IS EXACTLY WHY ITERATIVE INCREMENTAL DEVELOPMENT OF
REQUIREMENTS WORK – IT FORCES THE CHANGE TO OCCUR EARLY IN THE PROJECT,
THUS MINIMIZING THEIR IMPACT!

PROBLEMS WITH THE WATERFALL METHODOLOGY
THE COMMON USAGE OF THE WATERFALL LIFECYCLE
MODEL WAS SEQUENTIALLY FOLLOWING THE STEPS
OF REQUIREMENTS, DESIGN, IMPLEMENTATION,
VERIFICATION, AND MAINTENANCE.

1. DEFINE ALL REQUIREMENTS IN DETAIL UP-FRONT

2. DEFINE THE SYSTEM IN “TEXT” AND “DIAGRAMS”

3. IMPLEMENT THE SYSTEM “CODE, UNIT TEST, INTEGRATE”

4. INTEGRATE AND TEST THE SYSTEM COMPONENTS.

THIS MODEL DOES NOT WORK WELL WITH
ADAPTING REQUIREMENTS.

ALTHOUGH THIS WAS THE PREFERRED METHOD OF
MANAGING A SOFTWARE PROJECT IN THE 1970S, TODAY'S
RESEARCH CLEARLY SHOWS THAT THIS METHODOLOGY IS
ASSOCIATED WITH HIGHER RISK, HIGHER FAILURE RATES,
AND LOWER PRODUCTIVITY.

IN ADDITION, THE WATERFALL APPROACH RESULTS IN
OVERWHELMING DEGREES OF COMPLEXITY SINCE IT DOESN’T
BREAK THE DEVELOPMENT INTO MORE MANAGEABLE LEVELS
OF COMPLEXITY (E.G., A SUBSET OF CAPABILITIES)

PROBLEMS WITH DEVELOPING UP-FRONT REQUIREMENTS

• IN ANOTHER STUDY THE AUTHOR STATES THAT UP-
FRONT SPECIFICATION WITH A SIGN-OFF CAN NOT
BE SUCCESSFULLY CREATED AND THAT A STUDY
SHOWED THAT 45% OF THE FEATURES CREATED
FROM EARLY SPECIFICATION WERE NEVER USED,
WITH AN ADDITIONAL 19% RARELY USED AS
SHOWN IN THE GRAPH ON THE RIGHT.
[JOHNSON02]

• THE AUTHOR THEN PROCEEDED TO SAY “AVOID
PREDICTIVE PLANNING BECAUSE YOU CAN NOT
SIMPLY PLAN THE WORK AND WORK THE PLAN”
WHEN DOING ITERATIVE SOFTWARE
DEVELOPMENT.

• THIS WILL ONLY WORK IF YOU PROJECT IS NOT
FIRM FIXED PRICE OR IF YOUR CUSTOMER HAS
BOUGHT INTO THE IDEA OF YOU DELIVERING A
SYSTEM WITH ONLY 75%-95% OF THE FEATURES
THEY CONTRACTED!

7%
13%

16%

19%

45%

Actual Use of Up-Front
Specifications

Always

Often

Sometimes

Rarely

Never

AN AGILE CASE STUDY
AN AGILE PROJECT EXAMPLE - THE “STORY” OVERVIEW

IN CHAPTER 4 OF THE TEXT, THE AUTHOR PROVIDES AN EXCELLENT EXAMPLE
OF USING A VARIETY OF AGILE TECHNIQUES (UP, EVO, SCRUM, AND XP) TO
MANAGE A PROGRAM

• COMPANY: BORDER INFORMATION GROUP (BIG)

• PROJECT: BIOMETRIC RECORDING OR TRACKING HAZARDOUS EXTERNAL RADICALS (BROTHER)

• PROJECT MANAGER: CONVINCED UPPER MANAGEMENT THAT THE BEST WAY TO IMPLEMENT THIS
PROJECT WAS TO USED TIMEBOXED ITERATIVE DEVELOPMENT COMBINED WITH TIMEBOXED
INCREMENTAL DELIVER.

• IMPLEMENTATION TEAM: 1 PROJECT MANAGER, 1 SYSTEM ARCHITECT, 5 SOFTWARE DEVELOPERS

• PROJECT START DATE = 1/1/2021…. 1ST TIMEBOXED INCREMENTAL DELIVERY (ID) TO CUSTOMER
= 10/1/2021. DELIVERY DATA IS FIXED; OK FOR FEATURES TO FALL OUT OF 1ST DELIVERY TO
CUSTOMER.
(REFER TO LECTURE 3, SLIDE 9 FOR DEFINITION OF ID)

• THE CUSTOMER WILL BE AVAILABLE PART TIME EACH DAY. IN ADDITION, THERE WILL BE A
DEDICATED SUBJECT MATTER EXPERT (SME) WHO’S PREVIOUS OCCUPATION OF BEING A
BOARDER GUARD WILL BE AN ASSET TO THE TEAM.

• THE INITIAL SOFTWARE WILL BE DEPLOYED AT 2 LOW TRAFFIC AIRPORTS FOR 2 MONTHS TO GET
THE BOARDER GUARD’S AND PASSENGER FEEDBACK ON SYSTEM.

AN AGILE CASE STUDY
AN AGILE PROJECT EXAMPLE - THE “STORY” – WEEK 1

[SCRUM-01] TEAM RELOCATES TO A FACILITY AT 1 OF THE TARGET AIRPORTS THAT HAS A
LARGE ROOM THAT COULD BE USED FOR COLLABORATION AND CUBICLES THAT CAN BE
USED WHEN MEMBERS OF THE TEAM NEED QUIET TIME.

[SCRUM-02] TEAM TO PROVIDE A DEMO TO BIG’S UPPER MANAGEMENT EVERY 3-4 WEEKS.

[XP-01] CUSTOMER TO BE PRESENT EVERY MORNING, BOARDER GUARD TO PARTICIPATE AS
SME FOR TEAM.

AN AGILE CASE STUDY
AN AGILE PROJECT EXAMPLE - THE “STORY” – WEEK 1 (CONTINUED)
[UP-01] TEAM TO HOLD A 2-DAY PLANNING AND REQUIREMENT WORKSHOP. GOAL IS TO BRAINSTORM
REQUIREMENTS WHILE INCORPORATING A 20-PAGE WISH LIST FROM THE CUSTOMER.

• PROJECT MANAGER RECOMMENDS TEAM SELECT TOP 20% OF THE REQUIREMENTS AND CUSTOMER
RECOMMENDATIONS BASED ON ARCHITECTURAL SIGNIFICANCE, RISK, AND VALUE. TEAM USED A DOT
SYSTEM TO PRIORITIZE.

• TEAM SPENDS NEXT 2-DAYS ANALYZING REQUIREMENTS:

• [UP-02] TEAM DECOMPOSED FUNCTIONAL REQUIREMENTS INTO MULTIPLE USE CASES

• [EVO-01] TEAM IDENTIFIED NON-FUNCTIONAL (CUSTOMER) REQUIREMENTS THAT NEED TO BE
QUANTIFIED (E.G., FAST RESPONSE) AND MEASURABLE (EASY TO USE) AS KEY REQUIREMENTS.

• TEAM LEAD SET EXPECTATIONS - FOR FIST ITERATIVE DEVELOPMENT CYCLE THAT WOULD START ON 01-
09 AND END ON 01-26 WITH A DEMO CONSISTING OF A PARTIALLY RUNNING SYSTEM CONNECTED TO A
BIOMETRIC METER.

• [XP-02] TEAM DECIDES WHAT THEY CAN ACCOMPLISH WITH THE NEXT TWO WEEKS FROM THE 20%
OF THE IDENTIFIED REQUIREMENTS

• [UP-03] TEAM DECIDES TO IMPLEMENT A THE “POSITIVE PATH” ON A FEATURE THAT WILL TOUCH ON
VARIOUS ARCHITECTURAL FEATURES OF THE SYSTEM.

• [XP-03] TEAM DETERMINES THE NUMBER OF HOURS NEEDED TO IMPLEMENT THE WORK AND
COMPARES IT TO THE NUMBER OF AVAILABLE HOURS WITHIN THE TIME BOX (ASSUMING NO
OVERTIME). THE TEAM REDUCES THE SCOPE WITHIN THIS ITERATION TO FIT WITHIN THE TIMEBOX.

• [SCRUM-03] PROGRAM MANAGER ENTERS FEATURES TARGETED FOR 1ST ITERATION INTO A SCRUM
SPRINT BACKLOG SHEET.

AGILE CASE STUDY
AN AGILE PROJECT EXAMPLE - THE “STORY” – WEEK 2

[SCRUM-04] TEAM HOLDS DAILY 20 MIN. STAND-UP MEETINGS: REVIEWS GOAL FOR
ITERATION, REMAINING TASKS WITHIN ITERATION, HOLDS TEAM Q&A, ASKS TEAM
MEMBERS TO VOLUNTEER FOR ONE OF THE REMAINING TASKS TO COMPLETE.

[UP-04] CHIEF ARCHITECT EDUCATIONS TEAM ON POTENTIAL ISSUES AND DESIGN AND
EXPLAINS THEIR VISION SO THE SYSTEM CAN BE DECOMPOSED INTO COMPONENTS. TEAM
REFINES IDEA AND EXPLORES AND COORDINATES THE DESIGN IDEAS ON WHITE BOARD.

[XP-04] TEAM MOVES OUT ON CODING AFTER DECIDING TO USE XP PRACTICE OF TEST-
DRIVEN DEVELOPMENT. ONE OF THE DEVELOPERS IS ASSIGNED THE TASK OF DEVELOPING
ACCEPTANCE TEST. AS CLASSES AND UNIT TESTS ARE CREATED, THEY ARE CHECKED INTO
A BUILD MACHINE THAT RUNS THE TESTS AS PART OF CONTINUOUS INTEGRATION WHICH
RESULT IN PROBLEMS BEING QUICKLY IDENTIFIED AND RESOLVED.

[XP-05] EACH MORNING A TEAM MEMBER COLLECTS METRICS ON EVERYONE’S PROGRESS
AND UPDATES THE SPRINT BACKLOG SPREADSHEET. COMPLETED TASKS ARE CROSSED
OUT ON THE WHITE BOARD.

AGILE CASE STUDY
AN AGILE PROJECT EXAMPLE - THE “STORY” – WEEK 3+

AS CODE FROM MULTIPLE DEVELOPERS COME TOGETHER, THE TEAM BEGINS TO DEVELOP A
SYNERGY AND THE OVERALL SYSTEM STARTS TO TAKE SHAPE AS PRODUCTION CODE AND UNIT
TESTS ARE CHECKED IN DAILY.

AS THE TEAM APPROACHES THE TARGET DEMO DATE, THEY DO A CHECK OF THE BACKLOG AND
DETERMINE IT THAT THEY HAVE ENOUGH TIME TO COMPLETE ALL OF THE ITEMS IN TIME FOR THE
DEMO.

[SCRUM-05] TEAM HOLDS A DEMO TO THE BIG EXECUTIVES. EVEN THOUGH THE SYSTEM
DOESN’T DO MUCH IT WAS IMPRESSIVE THAT THERE WAS A WORKING SYSTEM WITHIN 3 WEEKS.

THE BIG EXECUTIVE REQUEST THAT THE SYSTEM MUST ALSO INTERFACE WITH A 3RD PARTY FACE
RECOGNITION SYSTEM BASED ON COMPETITIVE SYSTEMS CURRENTLY UNDER DEVELOPMENT.

THE TEAM BEINGS PLANNING ITS FEATURES OF THE SECOND ITERATION THAT WILL FOCUS ON
THIS HIGH PRIORITY REQUEST.

AGILE CASE STUDY
WHERE WOULD YOU CONSIDER THIS EXAMPLE TO FALL WITHIN THE COCKBURN SCALE?

This classification
model is used to

identify
methodologies

best suited for UP,
SCRUM, XP, and/or

Evo process
models.

Life-Critical

Company Fails

Lost Profits

Annoyance

D20 ?

E20 ?

L20 ?

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN, EIGHTH
EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY PEARSON
EDUCATION , INC.

SPECIFIC SOURCES THE AUTHOR QUOTED:

[JOHNSON02] - JOHNSON, J. 2002. KEYNOTE SPEECH, XP 2002, SARDINIA, ITALY

[JONES97] - JONES, C. 1997. APPLIED SOFTWARE MEASUREMENTS. MCGRAW HILL.

[PARKINSON58] - PARKINSON, N. 1958. PARKINSON’S LAW: THE PURSUIT OF
PROGRESS. JOHN MURRAY.

[STANDISH94] - JIM JOHNSON, ET. AL 1994. CHAOS: CHARTING THE SEAS OF
INFORMATION TECHNOLOGY. PUBLISHED REPORT. THE STANDISH GROUP

[THOMAS01] - THOMAS, M. 2001. “IT PROJECTS SINK OR SWIM” BRITISH
COMPUTER SOCIETY REVIEW.

CS466 – SOFTWARE PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER 6)

A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 6: EVIDENCE

BY: JOSEPH MARTINAZZI

EVIDENCE
WHAT ARE THE MOST EXCITING, PROMISING SOFTWARE ENGINEERING IDEAS OR TECHNIQUES ON THE
HORIZON?

I DON’T THINK THAT THE MOST PROMISING IDEAS ARE ON THE HORIZON. THEY ARE ALREADY HERE AND HAVE
BEEN FOR YEARS BUT ARE NOT BEING USED PROPERLY. – DAVID L. PARNAS

TODAY’S LECTURE FOCUSES ON WHY ITERATIVE AND INCREMENTAL DEVELOPMENT (IID) HAS A HIGHER
PROBABILITY OF SUCCESS COMPARED TO THE WATERFALL MODEL. TOPICS THAT WILL BE COVERED INCLUDE:

1. RESEARCH EVIDENCE – STUDIES THAT PROVE PROGRAMS THAT USE AN IID APPROACH HAVE LOWER RISK, ARE MORE
EFFICIENT, AND PRODUCES A HIGHER QUALITY PRODUCT.

2. EARLY LARGE PROJECT EVIDENCE – EXAMPLES OF LIFE-CRITICAL SYSTEMS THAT HAVE SUCCESSFULLY BEEN
DEVELOPED USING AN IID APPROACH.

3. STANDARDS-BODY EVIDENCE – DESCRIBES HOW THE DOD ADOPTED MIL-STD-498 IN 1987 THAT UTILIZES ITERATIVE
AND EVOLUTIONARY METHODS.

4. EXPERT THOUGHT LEADER EVIDENCE – EXAMPLES OF PROMINENT SOFTWARE ENGINEERS AND THEIR
RECOMMENDATION TO ADOPT AN IID APPROACH TO SOFTWARE DEVELOPMENT.

5. A BUSINESS CASE – A COMPARISON OF AN IID APPROACH TO SOFTWARE DEVELOPMENT VS. A SERIAL WATERFALL
APPROACH.

6. WATER FALL PROBLEMS AND WHY IT IS STILL PROMOTED – COMPANIES LIKE THE IDEA OF “REQUIREMENT
DEVELOPMENT IS COMPLETE” PRIOR TO BEGINNING SOFTWARE DEVELOPMENT.

1. RESEARCH EVIDENCE
THE AUTHOR POINTS TO VARIOUS STUDIES THAT SHOW EVOLUTIONARY DEVELOPMENT RESULTS IN A
HIGHER PROBABILITY OF SUCCESS COMPARED TO PROGRAMS THAT FOLLOW A WATERFALL MODEL.

A STUDY LEAD BY ALAN MAC CORMACK [MACCORMACK01] IDENTIFIED 4 PRACTICES THAT WERE COMMON
ACROSS THE MOST SUCCESSFUL PROGRAMS. THESE PROGRAMS:

1. FOLLOWED AN IID PROCESS WHICH EMPHASIZED AN EARLY RELEASE OF THE PRODUCT TO THE STAKEHOLDERS
FOR REVIEW AND FEEDBACK. [COMMON AMONG ALL IID] – “SOFTWARE DEVELOPMENT BEST PRACTICE”

2. DAILY INCORPORATION OF NEW SOFTWARE ONTO A REGRESSION TESTED BUILD. [COMMON AMONG ALL IID]

3. A TEAM EXPERIENCED IN SHIPPING MULTIPLE PROJECTS.

4. EARLY ATTENTION TO SYSTEM ARCHITECTURE AND COUPLING OF MAJOR COMPONENTS [UP PRACTICE]

DEFECT DENSITY IS THE NUMBER OF DEFECTS FOUND IN THE SOFTWARE/MODULE DURING A SPECIFIC
PERIOD OF OPERATION OR DEVELOPMENT DIVIDED BY THE SIZE OF THE SOFTWARE/MODULE. IT ENABLES
ONE TO DECIDE IF A PIECE OF SOFTWARE IS READY TO BE RELEASED. DEFECT DENSITY IS COUNTED PER
THOUSAND LINES OF CODE ALSO KNOWN AS KLOC.

1. RESEARCH EVIDENCE
A FOLLOW-UP STUDY LEAD BY MAC CORMACK [MKCC03] IDENTIFIED 2 DRIVING IID FACTORS
THAT IMPACTED DEFECT DENSITY.

• BY RELEASING THE SYSTEM EARLY (E.G. WHEN 20% OF THE FUNCTIONALITY WAS COMPLETE VS.
40%), THE ESCAPING DEFECT RATE DECREASED BY 10 DEFECTS/MONTH PER MILLION LINES OF
CODE.

• BY CONTINUOUSLY INTEGRATING CODE ONTO A REGRESSION TESTED DAILY BUILD, THE ESCAPING
DEFECT RATE DECREASED BY 13 DEFECTS/MONTH PER MILLION LINES OF CODE.

THIS IMPLIES THAT MORE IN-PHASE DEFECTS WERE DETECTED DURING CODE/UNIT TEST MAKING
THEM CHEAPER TO FIX!
(ON PAGE 79 OF THE TEXT, THE AUTHOR STATES SEVERAL CASE STUDIES REPORT LOWER DEFECT DENSITIES
ARE ASSOCIATED WITH IID METHODS [MANZO02], HOWEVER THEY ARE NOT STATISTICALLY RELIABLE.)

THE SAME STUDY ALSO IDENTIFIED THAT THESE SAME FACTORS IMPACTED PRODUCTIVITY.

• BY RELEASING THE PRODUCT EARLY (E.G. WHEN 20% OF THE FUNCTIONALITY WAS COMPLETE VS.
40%), 8 ADDITIONAL LINES OF SOURCE CODE WERE PRODUCED BY EACH PERSON DAILY.

• BY CONTINUOUSLY INTEGRATING CODE ONTO A REGRESSION TESTED DAILY BUILD, 17
ADDITIONAL LINES OF SOURCE CODE WERE PRODUCED BY EACH PERSON DAILY.

1. RESEARCH EVIDENCE

ANOTHER LARGE STUDY CONDUCTED BY THE STANDISH GROUP [STANDISH98]
ANALYZED 23,000 PROJECTS. THIS STUDY FOUND THAT 4 OF THE TOP 5 FACTORS
IN SUCCESSFUL PROJECTS WERE RELATED TO IID METHODOLOGIES.

HIGH USER INVOLVEMENT – WITH SHORT ITERATIONS, DEMOS, REVIEWS, EVOLUTIONARY
REQUIREMENT REFINEMENT, AND CLIENT DRIVEN ITERATIONS

EXECUTIVE SUPPORT – FOCUSED ON TANGIBLE RESULTS

CLEAR BUSINESS OBJECTIVES – DRIVEN BY CLIENT-DRIVEN PLANNING

EXPERIENCED PROJECT MANAGER

SMALL MILESTONES – ARE AT THE HEART OF THE IID METHODOLOGY

1. RESEARCH EVIDENCE – SIZE RESEARCH
THIS SAME STUDY [STANDISH98] ALSO ANALYZED
PROJECT SUCCESS, BASED ON THE PROJECT COMPLETING
WITHIN COST/SCHEDULE AND CONTAINING ALL THE
SPECIFIED FUNCTIONALITY, IN RELATIONSHIP TO
DURATION. AS SHOWN IN THE GRAPH TO THE LEFT;
SMALLER PROJECTS THAT COMPLETED IN SEVERAL
MONTHS EXPERIENCED A HIGHER SUCCESS RATE THAN
LARGER PROJECTS LASTING 36 MONTHS.

• SMALL PROJECTS ARE LESS COMPLEX AND TAKE
LESS TIME TO COMPLETE.

• FOR A LARGE PROJECT TO BE SUCCESSFUL, IT MUST
BE BROKEN DOWN INTO SMALL (LESS COMPLEX)
ITERATIONS.

THIS TREND WAS CONFIRMED BY A FOLLOW-UP STUDY
SPANNING 35,000 PROJECTS [STANDISH00] THAT
FOCUSED ON COST.

• SMALL PROJECTS ARE LESS COSTLY TO COMPLETE.

• FOR A LARGE PROJECT TO BE SUCCESSFUL, IT MUST
BE BROKEN DOWN INTO SMALL (LESS COMPLEX)
ITERATIONS.

0 5 10 15 20 25 30 35 40
0%

10%

20%

30%

40%

50%

60%

70%

Project Success (23,000 projects)
vs. Duration (months)

Cost <0.5 M 0.5M-3M 3M - 6M 6M-10M >10 M

Success 68% 22% 9% 1% 0%
UP, XP, &
SCRUM

1. RESEARCH EVIDENCE – CHANGE RESEARCH
THE FOLLOWING GRAPH IS BASED ON
RESULTS FROM MULTIPLE LARGE-SCALE
SOFTWARE DEVELOPMENT PROJECTS.
[JONES97]

• IT ILLUSTRATES THAT AS THE
COMPLEXITY OF THE PROJECT
INCREASES (FUNCTION POINTS) THE
AMOUNT OF REQUIREMENT CHANGE
(OR CREEP) ALSO INCREASES.

• MEDIUM SIZE PROJECTS HAVE A
CHANGE RATE OF 25%

• LARGE SIZE PROJECTS HAVE A CHANGE
RATE OF 35%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Project Size in Function
Points

THIS ENFORCES THE CONCEPT THAT AN ITERATIVE LIFECYCLE MODEL HAS A
BETTER CHANCE OF SUCCESS THAN A SEQUENTIAL LIFECYCLE MODEL SINCE IT
CAN ADAPT BETTER TO CHANGING REQUIREMENTS, FOCUSES ON ARCHITECTURE
AND HIGH-RISK REQUIREMENTS EARLY, HAS A BETTER PRODUCTIVITY RATE, AND
A PRODUCES A HIGHER QUALITY PRODUCT (ONE WITH FEWER DEFECTS).

Typical SW project
experiences a 25%

% change rate.

1. RESEARCH EVIDENCE – CHANGE RESEARCH
• IN ANOTHER STUDY THE AUTHOR STATES THAT

UP-FRONT SPECIFICATION WITH A SIGN-OFF CAN
NOT BE SUCCESSFULLY CREATED AND THAT A
STUDY SHOWED THAT 45% OF THE FEATURES
CREATED FROM EARLY SPECIFICATION WERE
NEVER USED, WITH AN ADDITIONAL 19%
RARELY USED [JOHNSON02]

• THE AUTHOR THEN PROCEEDED TO SAY “AVOID
PREDICTIVE PLANNING BECAUSE YOU CAN NOT
SIMPLY PLAN THE WORK AND WORK THE PLAN”
WHEN DOING ITERATIVE SOFTWARE
DEVELOPMENT.

• THIS WILL ONLY WORK IF YOU PROJECT IS NOT
FIRM FIXED PRICE OR IF YOUR CUSTOMER HAS
BOUGHT INTO THE IDEA OF YOU DELIVERING A
SYSTEM WITH ONLY 75%-95% OF THE FEATURES
THEY CONTRACTED!

7%
13%

16%

19%

45%

Actual Use of Up-Front
Specifications

Always

Often

Sometimes

Rarely

Never

1. RESEARCH EVIDENCE – WATERFALL FAILURE RESEARCH

THE AUTHOR PROVIDED NUMEROUS EXAMPLES OF
STUDIES SHOWING HOW MOST PROGRAMS FOLLOWING
THE WATERFALL LIFE-CYCLE MODELED FAILED.

1. IN A STUDY OF 1,027 IT PROJECTS IN THE UK
[THOMAS01]THAT USED THE WATERFALL METHODOLOGY;
87% OF THE PROJECTS FAILED. OF THESE FAILED
PROJECTS, 82% CITED THE NUMBER ONE PROBLEM WAS
DEVELOPING ALL THE REQUIREMENTS UP FRONT.

2. PREVIOUSLY THE DEPARTMENT OF DEFENSE (DOD)
REQUIRED PROJECTS TO ADHERE TO STANDARD DOD-
STD-2167 WHICH REQUIRED THE USE OF THE WATERFALL
LIFECYCLE MODEL. THIS RESULTED IN 75% OF THE DOD
PROJECTS FAILING OR NEVER BEING USED.

3. ONE STUDY [JARZOMBEK99] FOUND THAT EVEN THOUGH
46% OF THE SYSTEMS DEVELOPED FOR THE DOD MET
THE SPECIFICATIONS, THEY FAILED TO MEET THE REAL
NEEDS OF THE CUSTOMER AND WERE NEVER
SUCCESSFULLY USED.

4. ANOTHER STUDY IDENTIFIED THAT THE INABILITY TO
DEAL WITH CHANGING REQUIREMENTS AND LATE
INTEGRATION WERE ALSO SIGNIFICANT CONTRIBUTORS
TO FAILED PROJECTS [JONES95].

Wikibooks Creative Commons

1. RESEARCH EVIDENCE – PRODUCTIVITY RESEARCH
• IN A STUDY [JONES00] COMPARED 500

PROJECTS FROM 1997-1999 AND FOUND THAT
AS THE SIZE OF FUNCTION POINTS IN A PROJECT
INCREASES, THE MONTHLY PRODUCTIVITY OF
THE STAFF DECREASES.

THIS MEANS THAT PROJECTS WITH 1,000 OR FEWER
FUNCTION POINTS ARE THE MOST PRODUCTIVE AS
SHOWN IN THE GRAPH TO THE LEFT.

• IN A STUDY[MARTIN91] FOUND THAT
TIMEBOXING ITERATIONS ALSO SIGNIFICANTLY
INCREASED PRODUCTIVITY.

• IN ANOTHER STUDY [JONES00] FOUND THAT
PRODUCTIVITY IS ALSO IMPACTED BY
COMPLEXITY AS SHOWN IN THE TABLE TO THE
LEFT.

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

Productivity vs. Size
(500 projects 1997-1999

Low Complexity High Complexity
Productivity 13% -35%

1. RESEARCH EVIDENCE – QUALITY & DEFECT RESEARCH

• DEFECT REDUCTION COMES FROM AVOIDING
DEFECTS BEFORE THEY OCCUR (DEMING’S TOTAL
QUALITY MANAGEMENT PRINCIPAL) AND FROM
FEEDBACK (PEER REVIEWS, TEST, DEMOS ETC.)

• THE AUTHOR POINT TO VARIOUS STUDIES TO SHOW
THE BENEFITS OF IID:

• [MKCC03] INDICATING IID WAS CORRELATED TO
LOWER DEFECTS,

• [MV101] INDICATING THAT DUE TO LESS TIME
BETWEEN CODING AND TESTING, DEFECT RATES
DECREASE,

• [DECK94] SHOWS A STATISTICALLY SIGNIFICANT
REDUCTION IN DEFECTS USING AN IID APPROACH.

• IID METHODOLOGIES:

• ENCOURAGE CONTINUOUS PROCESS IMPROVEMENT
BY MEASURING, REFLECTING, AND ADJUSTING EACH
ITERATION.

• EMPHASIZES EARLY DEVELOPMENT OF RISKY ITEMS,
DEMOS, AND TEST-DRIVEN DEVELOPMENT.

0 2000 4000 6000 8000 10000 12000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delivered Defects vs. Size

Size in Function Points (FP)

D
e
li
v
e
rd

 D
e
fe

c
ts

/F
P

The author then points to a large case
study by [Jones00] that show defect rates
increase non-linearly as the project size
grows.
Finally, the author states several case
studies report lower defect densities are
associated with IID methods [Manzo02],
however they are NOT statistically
reliable!

2. EARLY HISTORICAL PROJECT EVIDENCE
PRE-1970:

1958 PROJECT MERCURY – USED ITERATIVE DEVELOPMENT TO SUCCESSFULLY BUILD THE SYSTEM
INCREMENTALLY.

1970S:

THIS PROJECT LAID THE FOUNDATION FOR THE IBM FEDERAL SYSTEMS DIVISION (FSD) WHICH BUILT
MANY AEROSPACE AND DEFENSE SYSTEMS THROUGHOUT THE 1970S INCLUDING:

THE US TRIDENT SUBMARINE (1972) WHICH USED 4 TIMEBOXED ITERATIONS OF 6 MONTHS IN
DURATION.

THE TRW/ARMY SITE DEFENSE SOFTWARE PROJECT FOR BALLISTIC MISSILE DEFENSE WHICH
DEVELOPED THE SYSTEM IN 5 ITERATIONS WITHOUT TIMEBOXING.

US NAVY HELICOPTER-SHIP SYSTEMS LAMPS THAT USED 45, 1-MONTH ITERATIONS TO SUCCESSFULLY
DEVELOP THE SYSTEM.

1977-1980 - PRIMARY AVIONICS SOFTWARE SYSTEM FOR THE SPACE SHUTTLE WAS BUILT IN 17
ITERATIONS OVER 31 MONTHS AVERAGING 8 MONTHS/ITERATION.

EVERYONE OF THESE SYSTEMS WERE DEVELOPED ON TIME AND UNDER BUDGET.

2. EARLY HISTORICAL PROJECT EVIDENCE
1980S:

1984-1988 – MAGNAVOX ELECTRONIC SYSTEMS ARTILLERY COMMAND AND CONTROL SYSTEM FOR
THE US ARMY WAS BUILT IN 5 ITERATIONS.

1983-1994 – US AIR TRAFFIC CONTROL (ATC) WAS RUN USING THE TRADITIONAL WATERFALL MODEL.
 IT FAILED DUE TO LACK OF STAKEHOLDER FEEDBACK, ANALYSIS PARALYSIS, COMPLEXITY
OVERLOAD, ETC. THIS PROJECT WAS RESTARTED USING ITERATIVE DEVELOPMENT AND SUCCEEDED.

1990S:

THE CANADIAN AIR TRAFFIC CONTROL (CAATS) PROJECT IS ANOTHER EXAMPLE OF A FAILED
PROGRAM THAT WAS RE-STARTED USING A UNIFIED PROCESS APPROACH WITH 6-MONTH
ITERATIONS, A STAFF OF SEVERAL HUNDRED DEVELOPERS, AND OVER 1-MILLION LINES OF CODE
(ADA). THE PROGRAM WAS SUCCESSFUL.

THE PROGRAM WAS DEVELOPED BY A TEAM OF ENGINEERS THAT ORIGINATED AT HUGHES AIRCRAFT
COMPANY, FULLERTON CA. AFTER WINNING THE CONTRACT THE TEAM WAS RE-LOCATED TO CANADA TO
FORM HUGHES CANADA.

THIS COMPANY WAS BOUGHT BY RAYTHEON AND TURNED INTO RAYTHEON CANADA.

3. STANDARDS-BODY EVIDENCE
TRANSITION OF US DOD STANDARDS FROM WATERFALL (1980) TO ITERATIVE AND
EVOLUTIONARY (TODAY)

1980 – DOD-STD-2167 REQUIRED SOFTWARE DEVELOPMENT TO USE A WATERFALL LIFE-CYCLE MODEL AND
FOLLOW A DOCUMENTATION DRIVEN APPROACH.

1988 – DOD-STD-2167A REVISED DOD-STD-2167 TO ENCOURAGE IID ALTERNATIVES TO THE WATERFALL
LIFE-CYCLE MODEL. HOWEVER, SINCE THE STANDARD STILL FOCUSED ON A DOCUMENT DRIVEN
APPROACH TO DEVELOPMENT, MANY CONTRACTS STILL INTERPRETED IT AS IMPLYING THEY SHOULD
CONTINUE USING THE WATERFALL LIFE-CYCLE MODEL.

1994 – MIL-STD-498 SUPERSEDED DOD-STD-2167A. THIS STANDARD PROMOTED AN EVOLUTIONARY
REQUIREMENTS AND DESIGN APPROACH FOR ALL INCREMENTAL ITERATIONS.

2002 THE US FOOD AND DRUG ADMINISTRATION (FDA) ALSO UPDATED THEIR STANDARDS TO ELIMINATE
THE REQUIREMENT OF FOLLOWING THE WATERFALL LIFE-CYCLE MODEL AND REPLACED IT WITH ITERATIVE
DEVELOPMENT.

ALTHOUGH MANY EUROPEAN STANDARDS STILL REQUIRE THE USE OF THE WATERFALL LIFE-CYCLE MODEL;
NATO MADE THE LEAP TO EVOLUTIONARY DEVELOPMENT IN 2002.

4. EXPERT AND THOUGHT LEADER EVIDENCE
THE AUTHOR IDENTIFIES EXPERTS IN THE FIELD IDD INCLUDING:

HARLAN MILLS – WHO WORKED AT IBM FSD IN 1970. MILLS WAS A MAJOR CONTRIBUTOR TO THE CONCEPT OF
STRUCTURED PROGRAMMING, TOP-DOWN DESIGN PROGRAMMING, AND INCREMENTAL DEVELOPMENT. MILLS
STATED THAT “SOFTWARE DEVELOPMENT SHOULD BE DONE INCREMENTALLY IN STAGES WITH CONTINUOUS USER
PARTICIPATION AND REPLANNING WITH DESIGN TO COST PROGRAMMING WITHIN EACH STAGE”.

TOM GILB – PROMOTED THE “EVO” ITERATIVE METHOD IN 1976. GILB FOCUS WAS TO BREAK COMPLEX SYSTEMS
DOWN INTO SMALL STEPS THAT HAD A CLEAR MEASURE OF SUCCESS. AN ADVANTAGE OF THIS APPROACH WAS
THAT IF A STEP FAILED, IT GAVE YOU AN OPPORTUNITY TO INCORPORATE FEEDBACK, ADAPT, AND CONTINUE WITH
THE SOFTWARE DEVELOPMENT.

FREDERICK BROOKS – RECOMMEND AN IID APPROACH TO SOFTWARE DEVELOPMENT OVER USE OF THE WATERFALL
METHOD IN 1987 STATING THAT UP-FRONT REQUIREMENT SPECIFICATIONS WERE TO BLAME FOR THE HIGH
PERCENTAGE OF PROGRAM FAILURES. BROOKS ALSO PUBLISHED THE BOOK TITLED – THE MYTHICAL MAN MONTH
IN 1985 THAT STATED, “ADDING MANPOWER TO A LATE SOFTWARE PROJECT MAKES IT LATER”.

BARRY BOEHM – PUBLISHED THE BOEHM’S SPIRAL MODEL THAT PROMOTED ITERATIVE DEVELOPMENT IN 1985.

JAMES MARTIN – PROMOTED TIMEBOXED ITERATIVE DEVELOPMENT WITH CUSTOMER PARTICIPATION IN THE 1980S.
MARTIN BELIEVED THAT RAPID APPLICATION DEVELOPMENT (RAD) WAS A METHOD TO UNDERSTAND LARGE
COMPLEX SYSTEMS. THIS METHOD FOCUSED ON CREATING A PRODUCTION-GRADE PROTOTYPE, LEARNING FROM
IT, AND EVOLVING IT UNTIL IT PRODUCED A PRODUCT THAT THE END USER WANTED.

TOM DEMARCO – IDENTIFIED IID METHODOLOGY AS A RISK MITIGATION TECHNIQUE IN 2003.

5. A BUSINESS CASE FOR ITERATIVE DEVELOPMENT

A BUSINESS CASE FOR ITERATIVE DEVELOPMENT
CAN BE MADE BASED ON SEVERAL FACTORS
INCLUDING:

• PRODUCTIVITY (INCREASES)

• QUALITY (PROCESS AND PRODUCT)

• LESS FAILURES, LESS COST/SCHEDULE IMPACT

• CUSTOMER SATISFACTION (END-PRODUCT
MEETS EXPECTATIONS)

BASED ON THE GRAPH TO THE LEFT, IF A COMPANY AVERAGED 10 PROJECTS A YEAR
AND EACH PROJECT COST $1M. THEN IN THE 2000 A COMPANY WOULD STAND TO
LOOSE 23% OR $2.3M FROM FAILED PROJECTS AND HAVE COST OVERRUNS IN 49% OF
THE OTHER PROJECTS.

BY ADOPTING IID METHODOLOGIES BOTH PROJECT FAILURE RATES AND CHALLENGED
RATES WOULD BE REDUCED, THEREBY INCREASING THE COMPANY'S PROFITABILITY.

6. THE HISTORICAL ACCIDENT OF WATERFALL VALIDITY

WINSTON ROYCE - PUBLISHED A PAPER IN 1970 TITLED
“MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS
(LSS)” THAT RECOMMEND TO DO THE WATERFALL PROCESS
TWICE. TO FIRST HAVE A THROW-AWAY PROTOTYPE EFFORT
PRIOR TO IMPLEMENTING THE PROJECT WHEN THERE ARE
UNKNOWN FACTORS.

DOD-STD-2167 WAS ADOPTED IN THE 1980S WHICH REQUIRED
THE USE OF THE WATERFALL MODEL COMBINED WITH
DOCUMENT-DRIVEN REVIEWS. MOST IMPLEMENTORS OF LSS
LOST SIGHT OF THE NEED TO PROTOTYPE WHEN UNKNOWN
FACTORS ARE INVOLVED.

MANY OTHER STANDARDS WERE BASED ON DOD-STD-2167

WATERFALL WAS SIMPLE: DO REQUIREMENTS, DESIGN, AND
IMPLEMENTATION.

WATERFALL GAVE THE ILLUSION OF AN ORDERLY, PREDICTABLE,
ACCOUNTABLE, AND MEASURABLE PROCESS WITH SIMPLE
DOCUMENT DRIVEN MILESTONES.

UP-FRONT SPECIFICATIONS WERE PROMOTED BY SYSTEM
ENGINEERING ORGANIZATIONS.

CMMI INFLUENCED ORGANIZATIONS TO FOLLOW A DOCUMENT
DRIVEN DEVELOPMENT WHICH WAS IN LINE WITH A WATER FALL
METHODOLOGY.

WordPress.com - Creative Commons

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN, EIGHTH
EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY PEARSON
EDUCATION , INC.

SPECIFIC SOURCES THE AUTHOR QUOTED:

[DECK94] – DECK, M. 1994. “CLEANROOM SOFTWARE ENGINEERING: QUALITY
IMPROVEMENT AND COST REDUCTION.” PROCEEDINGS, 12TH PACIFIC NORTHWEST
SOFTWARE QUALITY CONFERENCE.

[JARZOMBEK99] – JARZOMBEK, J 1999. THE 5TH ANNUAL JAWS S3 PROCEEDINGS.

[JOHNSON02] - JOHNSON, J. 2002. KEYNOTE SPEECH, XP 2002, SARDINIA, ITALY

[JONES00] – JONES, C. 2000. SOFTWARE ASSESSMENTS, BENCHMARKS, AND BEST
PRACTICES. ADDISION-WESLEY.

[JONES95] –JONES, C. 1995. PATTERNS OF SOFTWARE FAILURE AND SUCCESS.
INTERNATIONAL THOMPSON PRESS.

[JONES97] - JONES, C. 1997. APPLIED SOFTWARE MEASUREMENTS. MCGRAW HILL.

REFERENCES
SPECIFIC SOURCES THE AUTHOR QUOTED:

[MACCORMACK01] – MAC CORMACK, A. 2001. PRODUCT-DEVELOPMENT PRACTICES THAT
WORK.” MIT SLOAN MANAGEMENT REVIEW. 42(2)

[MANZO02] – MANZO, H, 2002. “ODYSSEY AND OTHER CODE SCIENCE SUCCESS STORIES.”
CROSSTALK: THE JOURNAL OF DEFENSE SOFTWARE ENGINEERING, OCT. 2002, USA DOD.

[MARTIN91] – MARTIN, J. 1991. RAPID APPLICATION DEVELOPMENT. MACMILLAIN

[MKCC03]- MAC CORMACK, A. KEMERER, C., CUSUMANO, M., AND CRANDALL, B. 2003.
“EXPLORING TRADE-OFFS BETWEEN PRODUCTIVITY & QUALITY IN SELECTION OF
SOFTWARE DEVELOPMENT PRACTICES.” WORKING DRAFT SUBMITTED TO IEEE SOFTWARE.

[MV101] – MAC CORMACK. A., VERGANTI, R., AND IANSITI, M. 2001. “DEVELOPING
PRODUCTS ON INTERNET TIME: THE ANATOMY OF A FLEXIBLE DEVELOPMENT PROCESS.”
MANAGEMENT SCIENCE. JAN 2001.

[STANDISH 98] - JIM JOHNSON, ET. AL 1998. CHAOS: A RECIPE FOR SUCCESS, 1998.
PUBLISHED REPORT. THE STANDISH GROUP

[THOMAS01] - THOMAS, M. 2001. “IT PROJECTS SINK OR SWIM” BRITISH COMPUTER
SOCIETY REVIEW.

