
Midterm Study Guide — CS 466 Software Processes

Jared Dyreson
California State University, Fullerton

March 6, 2021

Contents

1 Chapter 1 — Introduction 2
1.1 General Notes — Book . 2
1.2 General Notes — Slides . 2
1.3 Key Terms . 4

2 Chapter 2 — Iterative & Evolutionary Development1 6
2.1 General Notes — Book . 6
2.2 General Notes — Slides . 6
2.3 Key Terms . 7

3 Chapter 3 — Agile & Iterative Development 8
3.1 General Notes — Slides . 8
3.2 Key Terms . 8

4 Motivation & Agile Case Study2 9
4.1 General Notes — Slides3 . 9

1Lecture 3 — Pg. 10 Case Study
2Book Chapter 4 — Case Study
3Lecture 4 — Pgs. 8 - 13 are a regurgitation of the book

1

Abstract

This is by no means a comprehensive assessment of the first six lectures/chapters but
a condensed version of them. That would defeat the purpose of this document. Please
consult the external resources as described in the footnotes through out this study guide.
By the way, the book is fantastic, you should read it. Proudly written in vim and LATEX.
Good luck and have fun.

1 Chapter 1 — Introduction

1.1 General Notes — Book

• Specifications are important

• Difference between mass manufacturing (Waterfall)
and predictable manufacturing (Agile/IID).

• Factors that contribute to the demise of Waterfall. Clients:

– Are not sure what they want

– Have difficulty stating what they want and know

– Details of what [they] want will only be revealed during development

– Details are too complex

– Change their mind during development

– External forces lead to changes or enhancement requests

• Agile development is nimble and does not rely on monolithic structures to hinder its
performance

1.2 General Notes — Slides

• Project manager is supposed to define clear objectives and must also be adaptive/reactive
when issues arise.

• Make sure you have the proper budget and time period in which the system must be
completed including any interim milestones that must be met.

• The IMS is used for both the development team and the client, making sure the project
is on track for completion.

• Tasks have; duration (hours), budget (money), and a measure of how status will be
reported (50-50, % complete, etc)

• These tasks show that they’re; ahead, on, or behind schedule. Overrun can occur if tasks
are not completed in the set time frame.

2

• Programs that successfully manager their schedule buffers tend to be successful (uhh,
yeah?)

• IMS helps track down program staffing (hours and budget must be allocated, therefore
number of engineers must be known). It is paramount that the correct number of SWE’s
are deployed on a project at any given time. 4

• When planning; look for risks (mitigate most if not all), use the least amount of the
budget, properly schedule the development team and create a strong startup process. 5

• As a software manager, you need to successfully utilize the IMS and IMP to create a SBP
that conforms to the time table allotted.

• During the startup (while establishing a baseline schedule/budget), the proposal infor-
mation is used to:

– Create SBP

– Support IMS Planning

– Justify your organization’s budget to program management

– Solidify the WBS you want to use to manage the program

– Create SDP

• All software activities must have defined hours allotted and an associated budget. Please
refrain from using LoE (Level of Effort) in an IMS unless it is explicitly stated to do so.
Hard to quantify.

• Risks always need to be evaluated and need to be accounted for in your cost baseline

• These include; program size, performance, future obsolescence, hardware availability and
sub-contractor issues.

• Program organization is highly useful to know as it determines the success of a project.
Affects ability to implement iterative or an Agile approach.6

• Test in the environment that the software will be used 7. Most expensive errors are found
in production. It is paramount that integration test environment accurately reflects the
target environment.

• The software process can be contained in the SDP or referenced in other documents
included, with proper citations.

4Lecture 2 — Pg. 11 - 13
5Lecture 2 — Pg. 14
6Lecture 2 — Pg. 36 & 37
7Tuffix is tested in Ubuntu

3

1.3 Key Terms

• Change Management Plan — describes how program artifacts will be controlled and how
change will be managed during the development of the product

• IMP — Integrated Master Plan, which comprises a hierarchy of program events. Each
event is supported by specific accomplishments. Event-driven plan. Structure in which
the IMS conforms to.

• IMS — Integrated Master Schedule, which details work/planning packages which are
necessary to support the IMP’s events. Time table.

• Work Package — implies the task can be worked within the next several months

• Planning Package — implies the task to be worked on at some future date on the program.

• Critical Chain Project Management — Minimize program schedule impact and keep in-
sight into task implementation. You need to take into consideration Murphy’s Law.

• STD — Software Technical Lead

• SPM — Software Project Management

• PMO — Program Office

• SBP — Software Build Plan. Breaks the software major capabilities/features that will
be developed (backlog — Agile speak)

• Point of Departure Build — Software baseline for foundation of project and theoretical
data to be fed in the form of tests to ensure behavior is correct.

• Framework Enhancement Build — Modifications to the baseline to improve functionality
and extendibility of the environment being used (OpenGL — graphics programming, libgc
— C library that several programs like OpenGL utilize). See the layering effect.

• Capability/Features Builds — Once the skeleton is created in the form of frameworks,
add more components that utilize this newly created foundation, such as graphics and
must have features.

• BOE — Basis of Estimate. How many lines of code will be developed and the hours
associated with the task’s completion. Needs high-level description of what each capabil-
ity/feature will achieve

• WBS — Work Breakdown Structure. All activities are organized base on hours/budget
for activities that nee to be performed as part of program execution. 8. Software man-
agement, support, development, test, and maintenance activities need to be created.

– SW Organization with respect to the program

– High-level SW schedule with key milestones

– SW risks associated the proposed development

– SW measurements and analysis plan (new, modified, and reused development into
account)

8See Lecture 2 — Pg. 18 for example and Pg. 28 - 33 for Decomposition

4

– SW Configuration management plan (only tested software gets pushed to produc-
tion)

– SWE Environment (in-house lab facilities)

– SW Development paradigm (Agile, EVO, UP, etc)

– SW Process (IMS, RAM, etc) and artifacts produced. External documents to this
one

– Declaration of FOSS used in development

• SW — Software

• SWE — Software Engineer(ing)

• SDP — Software Development Plan. Captures the management approach and engineering
environment effort associated with the program:

• FOSS — Free and Open Source Software

• SPM — Software Program Manager

5

2 Chapter 2 — Iterative & Evolutionary Development9

2.1 General Notes — Book

• All software is compiled across the team into one iteration release.

• These builds are internal and not pushed to production (PoC — Proof of Concept)

• Goes well with version control systems such as Git. Bugs can be traced to release builds.

• Most people now ascribe to IID however some DoD contracts still conform to the Waterfall
methodology.

• It is best to mix and match risk and client driven development, best of both worlds.

• If a timebox cannot be met, the overall scope of the iteration is reduced (not all timeboxes
need to be of equal length)

• IID embraces change not chaos. Needless changes are prohibited.

• Software Engineers need only know the qualities of the final build, not the individual
mechanisms that make up the system during initial planning

2.2 General Notes — Slides

• Iterative approaches include constructing design, programming, testing and requirement
analysis/specification in several intervals. Nothing is static10.

• The heart of IID ensures that each iteration builds on top of each other, ensuring only
tested code can move into production.

• Allows for multiple teams to work concurrently

• Regression tests pinpoint bugs easily

• New capabilities can be debugged

• Baseline ensures everyone is on the same page

• System features can be deployed in increments, allowing for rigorous testing

• At least three internal iterations are completed before delivery to the customer

• Iterations can last from (1 week to 6 months)11.

• Iterations can be attributed self-contained mini-projects, isolated from one another.

9Lecture 3 — Pg. 10 Case Study
10Lecture 3 — Pg. 2 for IID diagram
11Author states that the recommended length is 1 wk to 6 wks

6

2.3 Key Terms

• Adaptive development — Element adapt in response to feedback form prior work (user,
tests, developers, etc.)

• Client-driven iterative development — Clients choose the contents of the next iteration
based on what they perceive is the best business approach

• Cone of uncertainty — An initial phase (early requirements change) of high uncertainty
which drops as time passes and information accumulates.

• EVO — First iterative and evolutionary method, starting in the 1960s. Plans iterations by
highest value-to-cost ratio, and strongly promotes the unambiguous definition of quality
requirements. Program requirements dynamically change over the lifetime of the project’s
development and are not frozen at the start.

• Evolutionary iterative development — Same as adaptive however the customer provides
constructive criticism for future iterations.

• Incremental delivery — Practice of repeatedly delivering a system into production in a
series of expanding capabilities.

• Iteration Release — A stable, integrated and tested partially complete system.

• Iteration — Self-contained mini-project composed of activities such as requirement
analysis, design, programming, and testing.

• Iterative Development — Building software in which the overall lifecycle is composed of
several iteration in sequence

• Iterative and Incremental Development (IID) — Growing a system via iterations

• Program SW Configuration Plan — Details how SW artifacts are controlled and how the
change of the artifacts is managed. Includes requirements traceability, design documen-
tation, etc.

• Risk-driven iterative development — Riskiest, most difficult elements of a project are
chose for the early iterations. 12

• Timeboxing — Practice of fixing the iteration end date and not allowing it to change.
Round robin approach. Four variables that determine the success of the project; time,
scope, resources, and quality.

• UP or RUP — [Rational] Unified Process. Focuses on driving down the riskiest elements
and the creation of the core architecture of the project.

• Firm-Fixed Price — the type of contract in which the person buying a product or ser-
vice pays the seller a fixed amount that does not vary even if unexpected costs arise or
additional resources are needed.

• Cost Plus Program — an agreement to reimburse a company for expenses incurred plus
a specific amount of profit, usually stated as a percentage of the contract’s full price.

12E.G — The system be able to handle 5,000 simultaneous transactions

7

3 Chapter 3 — Agile & Iterative Development

3.1 General Notes — Slides

• Agile is a subset of IID methods

• Small timeboxes

• KISS (Keep it Simple Stupid); direct communication, self-directed teams, and working
code13.

• Job of the project manager is to promote he vision and having open communication (just
reading this made me feel like Agile is some sort of cult ritual)

• The entire team needs to participate

• Agile can be used on a larger scale

• The entire premise is to constantly be aware of the current needs of the project

3.2 Key Terms

• Ceremony — Amount of documentation, formal steps, reviews, etc

• Cycles — Number and lengths of iterations 14

• The Agile Manifesto — Like the Communist one, just less bloodshed. The Agile Principles.

• Defined Process — Many predefined and sequential activities

• Empirical Process — Based on frequency measurement and dynamic responses to variable
events15

• SCRUM — Self-organized teams, with daily standup meetings and daily team measure-
ment. Iterations are in 4 week blocks, with a demo to show for

• XP — Emphasizes collaboration (via peer programming, team working in a common
project room), constant refactoring of the code, and test-driven development (practice
of developing test cases prior to developing the code). Four values: Communication,
simplicity, feedback, and courage

• Crystal Family — Defines project complexity based on the criticality of the end-product
and size of staff required to complete the project

– E6: A project requiring a staff of 1-6 individuals and in which a failure would result
in a loss of essential money.

– E100: A project requiring a staff of 41-100 individuals and in which a failure would
result in a loss of life!

13Do not employ in romantic relationships
14Lecture 4 — Pg. 3 for diagrams of comparisons
15Lecture 4 — Pg. 11

8

https://agilemanifesto.org/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

4 Motivation & Agile Case Study16

Abstract

These chapters are starting to echo each other; I am not adding redundant information.

4.1 General Notes — Slides17

• As the complexity of the project increases, so does the amount of requirement creep occurs
18.

• Motivations for IID19.

• Work that has a shorter deadline gets done faster and better20.

• People remember slipped dates, but not slipped features

• Tackle small levels of complexity in a short period of time

16Book Chapter 4 — Case Study
17Lecture 4 — Pgs. 8 - 13 are a regurgitation of the book
18Lecture 4 — Pg. 2
19Lecture 4 — Pg. 3
20Parkinson’s Law

9

	Chapter 1 | Introduction
	General Notes | Book
	General Notes | Slides
	Key Terms

	Chapter 2 | Iterative & Evolutionary DevelopmentLecture 3 | Pg. 10 Case Study
	General Notes | Book
	General Notes | Slides
	Key Terms

	Chapter 3 | Agile & Iterative Development
	General Notes | Slides
	Key Terms

	Motivation & Agile Case StudyBook Chapter 4 | Case Study
	General Notes | SlidesLecture 4 | Pgs. 8 - 13 are a regurgitation of the book

