
1

Artificial Intelligence
CPSC 481

AI as Knowledge Representation
and Search:

State Space Search for Problem Solving

2

Lecture Overview

l States and state space
l States for knowledge/problem/solution representation
l Search in problem solving process
l General search approaches in state space

l Depth-first search
l Breadth-first search
l Backtracking

l State space search as a general problem solving
strategy

General Problem Solving Strategy

l How does human solve a problem in general?
l Do we use thousands of algorithms to solve different problems or

use only a few general method to solve all types of problems?

l Is there any general purpose process or framework to
solve all types of problems?
l Driverless car, Playing chess, Finding the cheapest car, Buying a ticket,

etc.

l State space search as a general problem solving
strategy

3

4

Human Problem Solving Process
l Think about these problems:

l Playing chess (Tic-tac-toe or 8 puzzle)
game,

l Exit a maze
l Ticket purchasing process,
l Driverless car

l What do we do to solve a
problem?
l Understand the problem

l solution/goal, constraints, states
l Define a state for each step and find

a sequence of states (or steps).
l A state can be a problem solving step or

status (information and available methods),
e.g., a state of object in Object-Oriented
programming.

l Use available information and
methods to move from one state
to next state.

5

State Space Search

l State, State Space, and Search:
l A state is a representation for a problem solving step that

involves available information and methods.
l A state needs to capture the essential features of a problem domain and

make the information accessible to a problem-solving procedure.

l A state space of a problem is all possible states.
l A search refers to a navigation method in a state space.

l State space search as a general problem solving
strategy is modeled based on a strategy used by humans to
solve difficult problems (those without algorithm solutions) or almost all
problems if resources and time are unlimited!
l AI was considered as a problem of state representation and search

in early AI research.
l State space search may be a candidate strategy for strong AI.

6

State Representation

l Expressiveness and efficiency are the key factors.
l Need to optimize the trade-off between expressiveness and

efficiency (using methods, e.g., search, read/write/update, etc.)
l Ultimately we need a powerful representation scheme to solve AI

problems.

l Different levels of state representation:
l Conceptual (or mental) representation,

l State
l Symbolic representation,

l Graph
l Computer representation (data structure)

l Variable, array, record, object, table, list, tree, queue, etc.

7

Euler invented graph theory to solve this problem.

The city of Königsberg

Invention of Graph Theory

Is there a walk around the city that crosses each bridge exactly once?

8

*Euler proved the problem:
Unless a graph contained either exactly
zero or two nodes of odd degree, the walk
is impossible.

Graph of the Königsberg Bridge System

Many other real-world problems can be thought (conceptually) as graph
problems – abstract thinking.

*State and state space can be represented using the Graph Theory.

9

10

*Directed graph: A graph is directed if arcs have a direction.
*Path: a sequence of nodes through successive arcs, e.g., (a, b, c, d)

A Labeled Directed Graph

11

A Tree is A Rooted Graph

*Tree: has a root that has path from the root to all nodes and every path is unique
without cycle.

A tree showing a family
relationships, parent and
children

12

(q Ù r) à p

AND/OR Graph to Represents
Subproblems and Alternative Paths

(q v r) à p

Ù (AND) operator indicates a problem decomposition (as subproblems to be solved).
v (OR) operator indicates alternative solution paths.
à (edge) operator indicates IF Then, implication, or dependency relationship.

q and r are
subproblems
to be solved.

q and r are
alternative
paths.

AND/OR graph can be
also represented by
implication in logic.

13

+State space search is a method to find a solution in the state space.
+Solution can be a state (containing the solution), path, or both

+State space can be also used as a means of determining the problem
complexity e.g., search space (all possible moves) for Chess.

using the graph theory

14

A State Space Graph for the 8-puzzle
Generated by “move blank” Operations

*Search: Moving from an
initial state to a goal state

*What are N, A, S, GD?
*What data structures can be used?
*How to search the search space?

*An instance of the travelling salesperson problem:
A –D—C—B—E—A with 450 miles

*Is it optimum solution (with the minimum cost)?
15

A State Space Graph for the Traveling
Salesman Problem

*Goal: Find the shortest
path for the salesman to
travel, visiting each city and
return to the starting city.

The finite state graph for a flip flop
in visualized representation 16

*Difference between State
Chart and FSM?

Transition matrix in
compact data structure

State Chart for ATM Machine

A State Space Graph for Finite State
Machines

Example of FSM:
Natural language processing
I was/am …
I are
I I I was/am …

17

Searching a Graph

l Types of solutions
l A goal state containing a

solution, e.g., theorem proving
l A path from initial to goal state,

e.g., finding the shortest path
l Both a goal state and path

l Search directions:
l From Initial to goal
l From Goal to Initial

l Search method
l How to search?

18

Search Directions in a State Space

l Data-driven (or forward)
l Use the knowledge and constraints found in each state of the problem to

guide search by applying rules/methods to produce new states until it
finds a goal state/solution.
l Most problems can be solved via data-driven approach.

l Goal-driven (or backward)
l Use knowledge of the goal to guide the search by checking what

rules/methods can be used to generate this goal and determine what
conditions must be true to use them.

l These conditions become the new goals/subgoals, and continue
working backward until it works back to the facts of the problem.
l Diagnosis, theorem proving, answering some multiple-choice questions, etc.

l Note: Both approaches explore the same problem space.
l Preferred strategy is chosen by the properties of the problem.
l Factors to consider: complexity and implementation difficulty, and

search space (estimated by branching factor)

When is the Data-driven Search Better?

l When all or most of the data are given in the initial
problem statement.
l For many interpretation problems by presenting a collection of data and

asking the system to provide a high-level interpretation
l Systems analyze data (e.g., interpreting geological data to find minerals,

PROSPECTOR)

l When there are a large number of potential goals, but
there are only a few ways to use the facts and given
information of a particular problem instance.
l DENDRAL expert system finds the molecular structure of organic

compounds based on their formula, mass.

l When it is difficult to formulate a goal or hypothesis.
19

When is the Goal-driven Search Better?

l Useful when the goal/hypothesis is already known or
easily formulated and finding causes when something is
already happened.
l Theorem proving (goal is the theorem to prove), question answering in expert

systems (questions are goals).

l Problem data are not given but must be acquired by the
problem solver.
l Finding causes, e.g., medical diagnosis problem, doctor orders only those that

are necessary to confirm or deny a particular hypothesis.

l When there are a large number of rules that match the
states of the problem and thus produce an increasing
number of conclusions (for reduced search space).
l Prove a statement “I am a descendant of Thomas Jefferson.”

20

General (Graph) Search Methods

l Depth-First Search (DFS)
l When a state is examined, all of its children and their descendant are

examined before any of its siblings
l Goes deeper and deeper into the search space, stop only when no

other descendants or goal is found
l Breadth-First Search (BFS)

l Explores the space in a level-by-level fashion. Only stop when there are
no more states to be explored at a given level and move to the next
level until it finds a goal

l Backtracking search
l Works like DFS except that it is allowed to backtrack to previous node

based on the cost computed for current node to a different path.

21

22

Example Graph and Search by DFS
and BFS

Note: In actual problem solving process, this type of search tree is
NOT given, instead we must explore it until it finds a solution.

goal

Start state

23

States at Iteration 6 of DFS

24

States at Iteration 6 of BFS

25

A Trace of DFS on the Graph

In order to maintain a path we need additional data structure.

Assuming the graph is search space.

Note: This graph is not given. Instead we must
explore it from the initial state A by DFS.
We need only two queues, Open and Closed.

26

DFS Algorithm

27

A Trace of BFS on the Graph

Note: This graph is not given. Instead we must
explore it from the initial state A by BFS.
We need only two queues, Open and Closed.

Assuming the graph is search space.

28

BFS Algorithm

Breadth-first search, showing
the order in which states were
removed from open.

29

BFS of the 8-Puzzle Problem

Breadth-first vs. Depth-first

l Breadth-first search
l Always examine all the nodes at level n before proceeding to level n+1.

l It may need a large amount of memory in many cases.
l Appropriate for a problem with small search space but a problem with

large space can be intractable.

l Depth-first search
l Can be efficient for a problem with many branches. If solution path is

long, it may find it quickly without wasting other branches.
l Space usage is good (may need less memory needed than BFS in general).

l Can be lost deep in the graph, possibly missing shorter paths in other
branches.

l Which approach is better?
l The decision should be based on the property of the problem.

l How to improve DFS or combine DFS and BFS?
30

Variations of DFS (Improved DFSs)

l DFS with bound
l At each iteration, it performs a complete DFS to the specified level

(bound).
l Once it gets below a certain level (or time), assume a failure on a search

path and go for another path, e.g., in chess play in a limited time.
l May handle some problems of both DFS and BFS.

l DFS with deepening
l At each iteration, it performs a complete DFS to the current depth

bound. This continues, increasing the depth bound by one at each
iteration.

l DFS with bound and deepening has the advantages over both
DFS and BFS, but space usage: B x n, (B = avg. # of children, n = level),
complexity O(Bn), still exponential.

31http://movingai.com/dfid.htmlMovie:

32

DFS of the 8-Puzzle with a Depth Bound of 5

Backtracking Search Algorithm

l One of the first search algorithms,
earlier than DFS and BFS

l Algorithm sketch
l Search begins at the start state and

pursues a path until it finds a goal or
dead end.

l If the goal is found, return goal, if
dead end or the current path is more
expensive, backtrack to the most
recent state on the path and
continue other paths.

l Works very similarly to DFS but
unlike DFS

33

A sate space by backtracking search

34

A Trace of Backtrack on the Graph
SL(state list), NSL(new state list), DE(dead ends), CS(current state)

Note: No actual backtracking like tracing backward to root node, is needed. Instead,
by maintaining ancestors information, we get the same search result as backtracking.

35

Backtracking Algorithm

SL(state list), NSL(new state list), DE(dead ends), CS(current state)

NSL: like open queue,
DE: like closed queue,
SL: Current path,
CS: Current state

This	condition	is	needed	for	
backtracking.	
Note:	We’ve	seen	any	state	in	SL.	

A General Problem Solving Process
using State Space Search Strategy

36

A problem to be solved

Represent the problem in State Space
(conceptual)

Represent the State Space represented problem
in Graph (symbolic)

Represent the Graph represented problem using
Data Structures and Search Algorithm
(implementation using computer)

Solution

Review Questions
l How does human solve a problem in general? Do we use a general purpose

problem solving strategy?
l What is state space search strategy? What are state, state space, and

search?
l What are the key elements to maintain for each state?
l What is the role of search algorithm in state space search strategy?
l Do you agree that human uses the state space search strategy when

solving problems?
l What is search space?
l What is initial state, goal state, path?
l What are different forms of a solution in a problem solving based on the

state space search?
l Describe the process of problem solving using the state space search

strategy.
l To think about applications, try to describe the process of solving various

complex problems such as driverless car, playing a board game like chess,
go, Sudoku, etc., using the state space search strategy?

37

l How can a state be represented? What data structure(s) can be used to
represent a state and a state space?

l What are the basic elements of a graph? What’s the benefit of using graph
theory?

l How can the graph theory be used for problem solving based on state
space search strategy?

l Describe the process of problem solving using graph? For applications of
graph theory, try to describe the process of solving various problems such
as 8-puzzle game, tic-tac-toe game, chess, buying a ticket, solving a math
problem, traveling sales man problem, etc. using graph theory.

l What are the important factors to consider in estimating/determining the
search space or complexity of a problem? Try to estimate the search space
for various problems.

l What is data-driven (or forward) search? For what types of problems do we
want to use data-driven search?

l What is goal-driven (or backward) search? For what types of problems do
we want to use goal-driven search?

l What’s the purpose of choosing the search direction? 38

l How does Depth-first search (DFS) work? How can we find a solution using
DFS?

l How does Breadth-first search (BFS) work?
l Why do we call DFS and BFS brute force search methods?
l How does Backtracking search work?
l What’s the primary difference between DFS and Backtracking search?
l Why is Backtracking search considered as an informed search method?
l Try some graph search examples by DFS, BFS, and Backtracking to fully

understand these algorithms.
l What are the primary benefits and limitations of using BFS, DFS, and

Backtracking search?
l What data structures can be used to implement a graph?
l What data structures can we use to implement DFS, BFS, and

Backtracking? Try some examples with the data structures to implement
these search methods.

l Describe a problem solving process with the state space search starting
from conceptual level to implementation level using specific data structures.

39

Most Important Points to Remember

l Can you explain the concept of state space search strategy?
l Why is graph theory important for state space search strategy?
l For a given complex problem:

l Can you describe the problem solving process using the state space
strategy?

l Can you describe the problem solving process using the graph theory?
l Can you implement DFS algorithm?
l Can you implement BFS algorithm?
l Can you implement Backtracking algorithm?

l Do you understand that DFS and BFS are brute force algorithms?
l Do you understand that although Backtracking is considered an

informed search, it is still based on the brute force search?

40

References

l George Fluger, Artificial Intelligence: Structures and Strategies for Complex
Problem Solving, 6th edition, Chapters 3, Addison Wesley, 2009.

41

