
Game Playing

1

Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer
programs is easy.

What Kinds of Games?

2

Mainly games of strategy with the following
characteristics:

1. Sequence of moves to play
2. Rules that specify possible moves
3. Rules that specify a reward for each move
4. Objective is to maximize your reward

Games vs. Search Problems

3

l Unpredictable opponent à specifying a move
for every possible opponent reply

l Time limits à unlikely to find goal, must
approximate

Two-Player Game

4

Opponent’s Move

Generate New Position

Generate Successors

Game
Over?

Evaluate Successors

Move to Highest-Valued Successor

Game
Over?

no

no yes

yes

Solving Problems involving Game

l Think about what’s happening during a game playing
like chess.
l How do we compute heuristic and take advantage of it?
l Once you made a move, what happens next?
l Solving problems involving game need different strategies (like Game

Theory).
l What is Game Theory?

l “The study of mathematical models of conflict and cooperation between
intelligent rational decision-makers."

l Originally, started with zero-sum games involving two persons (von
Neumann).

l Today, game theory applies to a wide range of behavioral relations, and
is now an umbrella term for the science of logical decision making in
humans, animals, and computers.

5

Game Types
l Zero-sum game/Non-zero-sum game

l A zero-sum game is a mathematical representation of a
situation in which each participant's gain or loss of utility is
exactly balanced by the losses or gains of the utility of the
other participants.

l Non-zero-sum describes a situation in which the interacting
parties' aggregate gains and losses can be less than or more
than zero. Example: prisoner's dilemma

l Many other types such as Cooperative/Non-
cooperative, Symmetric/Asymmetric,
Simultaneous/Sequential, etc.

6

Zero-Sum Game in a
Chess

l Things to consider when playing a chess
l Know the rules first and come up with winning strategies.
l The game involves at least two players and alternate turns.

l Try to play a chess game with your friend.

l How can we use a game strategy under the environment of
taking turns?
l Need take into account for the actions of the opponent.

l General winning strategy
l Maximize my advantage and Minimize opponent’s advantage

whenever possible (zero-sum game).
l Maximizing/Minimizing advantage doesn’t necessarily mean we

want MAX/MIN score all the time.
7

Mini-Max Algorithm (Adversarial Search)

l Assumption: Your opponent uses the same knowledge of the state space
as you use and applies that knowledge in a consistent effort to win the game.

l Algorithm sketch (based on BFS with bound) to make a decision

1. Create a game graph by the rules of the game and strategies.
2. Label each level of the game graph, alternating MIN and MAX.

l Decide either MAX or MIN at the root node based on your heuristic that
measures your advantage.

l Note: You always want to maximize your advantage.

3. For each leaf node, apply a heuristic function.
4. Propagates heuristic values upward the graph through successive

parent nodes according to the following rules:
l If the parent state is a MAX node, give it the maximum value from its children.
l If the parent state is a MIN node, give it the minimum value from its children.

5. Choose the path that returns the value to the root as your next
move. 8

Mini-Max Algorithm

9

10

Leaf nodes show heuristic values.

A Stage after Heuristics Applied to a
Hypothetical Game Tree by Fixed 3 Ply
Mini-Max

3-ply look ahead

11

Leaf states show heuristic values; Internal states show backed-up values.

The Stage after Heuristic Values
Propagated to a Hypothetical Game Tree

Move to
this node

Next possible states
after you make a move

Current state
given to you

12

Heuristics Applied to States of Tic-Tac-Toe
for Mini-Max Algorithm

X: my move
O: opponent’s move

13

Two Ply Mini-max Applied to the Opening
Move of Tic-Tac-Toe (from Nilsson, 1971)

MAX move firstà

MINà MINà

MINà

14

Two Ply Mini-max, and One of Two Possible
MAX’s Second Moves

15

Two-ply Mini-max Applied to MAX’s Move
Near the End of the Game

+Can we use the Best-
First Search when
playing a game?

+If the opponent makes
a mistake, will the mini-
max still work?

+Can a player who
uses mini-max strategy
be guaranteed to win a
game against a player
who doesn’t?

Questions
l How to decide MIN or MAX at the root node? (basis of my

advantage)

l Why do we alternate MIN-MAX?

l When you begin with MAX, do MIN nodes try to choose the
worst move?

l Why do we apply heuristic function to ONLY leaf nodes?

l If leaf nodes correspond to opponent’s turn, do we have to
choose always MIN?

l Do we reuse this same game tree to decide next move when
you have your turn after the opponent’s move?

16

Alpha-beta Pruning for Mini-max

l Problem of mini-max
l Pursues all branches in the space, including many that could be

ignored or pruned by a more intelligent algorithm.

l Main idea of alpha-beta pruning
l Rather than searching the entire space to the ply depth, it

proceeds in a depth-first fashion. Two values, alpha for MAX and
beta for MIN are determined during each search using more
informed heuristics for efficiency.
l Alpha can never decrease and Beta can never increase.

17

Algorithm sketch
l Descend to full ply depth in a depth-first fashion and

apply the heuristic f(n) to a state and all its siblings.
l Values are backed up to parents using mini-max

algorithm.
l Use two rules below to terminate search based on

alpha and beta values:
+Stop the search below any MIN node if the alpha value of its

ancestors (MAX node) ³ the beta value of the MIN node.
+Stop the search below any MAX node if the beta value of any

of its ancestors (MIN node) £ the alpha value of the MAX node.

18

The α-β algorithm

19

ALPHA cutoff

Note that: here, b is the successors’ b. n is current’s state’s temporary a

The α-β algorithm – cont.

20

BETA cutoff

Note that: here, a is the successors’ a. n is current’s state’s temporary b

21

Alpha-Beta Procedure
l The alpha-beta procedure can speed up a

depth-first minimax search.
l Alpha: a lower bound on the value that a max

node may ultimately be assigned

l Beta: an upper bound on the value that a
minimizing node may ultimately be assigned

v > a

v < b

Note that: here, a is current state’ a.
We seek for a v which is larger than a

Note that: here, b is current state’ b.
We seek for a v which is smaller than b

22

α-β pruning example

23

α-β pruning example

alpha cutoff

a = 3

24

α-β pruning example

25

α-β pruning example

26

α-β pruning example

27

Alpha Cutoff
> 3

3

8 10

a = 3

What happens here? Is there an alpha cutoff?

28

Beta Cutoff

< 4

4

b = 4

> 8

8 b cutoff

Q: why is it not Alpha cutoff?

29

Alpha-beta Pruning Applied to a
Hypothetical State Space Graph

DFS path

Alpha-beta pruning NEVER
create a complete game tree!

So Alpha-beta pruning NEVER
prune any branch, instead NOT
expand unnecessary branches.
The quality of decision making
will be the same if # of ply
remains the same.

+If we already
implemented MINI-
MAX algorithm
correctly, how can we
verify we correctly
implemented Alpha-
beta pruning?

Need to know h()
values for both
current and
parent nodes.

States without numbers are not evaluated

30

Alpha-Beta Pruning Practice

5 2 10 11 1 2 2 8 6 5 12 4 3 25 2

max

min

max

eval

References

l George Fluger, Artificial Intelligence: Structures and Strategies for
Complex Problem Solving, 6th edition, Chapter 4, Addison Wesley,
2009.

l Russel and Norvig, Artificial Intelligence: A Modern Approach, 3rd

edition, Prentice Hall, 2010.

31

