Engineering Economic Analysis

FOURTEENTH EDITION

Chapter 4

Equivalence for Repeated Cash Flows

Donald G. Newnan *San Jose State University*

Ted G. Eschenbach *University of Alaska Anchorage*

Jerome P. Lavelle *North Carolina State University*

Neal A. Lewis *Fairfield University*

> OXFORD UNIVERSITY PRESS

Chapter Outline

- Uniform Series Compound Interest Formulas
- Cash Flows That Do Not Match Basic Patterns
- Economic Equivalence Viewed as a Moment Diagram
- Relationships Between Compound Interest Factors
- Arithmetic Gradient
- Geometric Gradient
- Spreadsheets for Economic Analysis
- Compounding Period & Payment Period Differ

Learning Objectives

- Solve problems using uniform series compound interest formulas
- Use arithmetic & geometric gradients in modeling economic analysis
- Understand why cash flows assume uniformity
- Use spreadsheet to model & solve economic analysis problems

Vignette: Student Solar Power

Indiana State University (ISU) mechanical & manufacturing engineering technology students designed a photovoltaic system to make use of solar energy in 2008.

- **E** 2-axis tracking system
- 4 PV panels of 123 watts each, life of 25 yrs..
- Most electrical parts provided free by the college CIM Lab.

Vignette: Student Solar Power

- 1. Panels were purchased by ISU 5 years ago. Is the purchase cost a sunk cost?
- 2. How much difference due to a city's longitude if same panel installed there?
- 3. How important are latitude & yearly days of sunshine in system economics?
- 4. What costs must be considered & how can they be estimated over time?
- 5. How to compute the annual savings? Do panels decline in efficiency each year?

Uniform Series Compound Interest Formulas

 $A =$ end of period cash flow in a uniform series

Examples:

- Automobile loans, mortgage payments, insurance premium, rents, & other periodic payments
- Estimated future costs & benefits

Uniform Series Compound Interest Formulas

Uniform Series Compound Amount Factor

$$
F = A \left[\frac{(1+i)^n - 1}{i} \right] = A(F/A, i, n) \tag{4-4}
$$

Uniform Series Sinking Fund Factor

$$
A = F\left[\frac{i}{(1+i)^n - 1}\right] = F(A/F, i, n) \tag{4-5}
$$

Example 4-1 Uniform Series Compound Interest Formulas

\$500 deposited in a credit union (pays 5% compounded annually) at the end of each year for 5 years, how much do you have after the 5th deposit?

$$
0 - 1 - 2 - 3 - 4 - 5
$$

\n
$$
\begin{bmatrix}\nF = ? \\
F = A \left[\frac{(1 + i)^n - 1}{i} \right] = A(F/A, i, n)
$$

\n500 500 500 500 500 500 = \$2763\n\end{bmatrix} = 500(F/A, 5%, 5) = 500(5.526)

Example 4-2 Uniform Series; Multiple Cash Flows

Initial deposit = $$685; 375 deposited monthly. Interest rate = 6%, monthly compounding. How much is saved after 48 months?

F = 375(*F*/*A*, 0.5%, 48) + 685(*F*/*P*, 0.5%, 48) = \$21,156.7

You deposit \$200 now in account earning 3%.

After 5 years the value in account is A. \$206.00

- B. \$231.85
- C. \$218.00
- D. $-$ \$231.85
- E. None of the above

You deposit \$200 in account earning 3%.

After 5 years the value in account is

- A. \$206.00
- B. \$231.85
- $= 200(F/P, 3\%, 5) = 200(1.159)$
- $= FV(3\%, 5, 0, -200)$
- C. \$218.00
- D. $-$ \$231.85
- E . None of the above

You deposit \$200 at end of each year in account earning 6%.

After 5 years the value in account is A. $-$ \$267.65

- B. \$1060
- C. \$1127.42
- D. \$1360.38
- E. None of the above

You deposit \$200 at end of each year in account earning 6%.

After 5 years the value in account is

- A. $-$ \$267.65
- B. \$1060
- $= 200(F/A, 6\%, 5) = 200(5.637)$
- C. \$1127.42

$$
= FV(6\%, 5, -200)
$$

- D. \$1360.38
- E. None of the above

How much must Jim deposit at the end of each month to get \$1000 at year end? Bank pays 6% interest compounded monthly.

$$
i_{mo} = \frac{6\%}{12} = 0.5\%
$$

\n
$$
A = F(A/F, i, n) = 1000(A/F, 0.5\%, 12)
$$

\n
$$
= 1000(0.0811) = $81.10
$$

Uniform Series Compound Interest Formulas

Uniform Series Capital Recovery Factor
\n
$$
A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] = P(A/P, i, n) \qquad (4-6)
$$

Uniform Series Present Worth Factor

$$
P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = A(P/A, i, n) \tag{4-7}
$$

The Annuity Functions

See Appendix B

A machine costs \$5000 & lasts 5 years. If interest is 8%, how much must be saved annually to recover the investment?

$$
\oint_{5000}^{A} \frac{A}{1} \int_{2}^{A} \frac{A}{1} \int_{5}^{A} \frac{A}{1}
$$

= 5000(A/P, 8%, 5) = 5000(0.2505) = \$1252.50

To have \$1M after 40 years in account earning 6%

Your annual deposit must be

- A. \$6096
- B. \$25,000
- C. \$12,649
- D. \$6462
- E . None of the above

To have \$1M after 40 years in account earning 6%

Your annual deposit must be

- A. \$6096
- B. \$25,000
- C. \$12,649
	- $= 1M(A/F, 6\%, 40) = 1M(0.00646)$
- D. $$6462$ $= PMT(6\%, 40, 0, -1000000)$
- E . None of the above

A machine costs $$30,000$, O&M = $$2000/yr$. Savings = $$10,000/yr$. Salvage @ 5 yrs = \$7000. $i = 10\%$. PW = ??

 $P = -30,000 + (10,000 - 2000)(P/A, 10\%, 5) + 7000(P/F, 10\%, 5)$ $= -30,000 + (8,000)(3.791) + 7000(0.6209) = 4672

Example 4-6, Find Rate of Return

A machine costs $$30,000$, O&M = $$2000/yr$. Savings = \$10,000/yr. Salvage @ 5 yrs = \$7000. ROR= ??

 $0 = -30,000 + (10,000 - 2000)(P/A, i, 5) + 7000(P/F, i, 5)$

To solve with tabulated factors assume the interest rate & see if the $PW = 0$

Example 4-6, Find Rate of Return

Try 15% $P_{15} = -30,000 + (10,000 - 2000)(P/A, 15\%, 5) + 7000(P/F, 15\%, 5)$ $P_{15} = -30,000 + (8000)(3.352) + 7000(.4972) = 296.4 Try 18% $P_{18} = -30,000 + (10,000 - 2000)(P/A, 18\%, 5) + 7000(P/F, 18\%, 5)$ $P_{15} = -30,000 + (8000)(3.127) + 7000(.4371) = -\1924.3

By interpolation, $i = 15.4\%$

Interpolation

Find the value of x using interpolation

A. 11.5 B. 11.464 C. 11.478 D. I don't know

Find the value of x using interpolation

The firm invests \$75,000 to save \$9000/year in energy costs for 15 yrs

What is the project's rate of return?

- $A. 8.44\%$
- B. 0.08%
- $c. 8%$
- $D. 9.36\%$
- E. I don't know

The firm invests \$75,000 to save \$9000/year in energy costs for 15 yrs

What is the project's rate of return?

- $= RATE(15,9000, -75000)$ $A \ 8.44\%$
- $B. 0.08\%$
- $c. 8%$
- $D. 9.36\%$
- E. I don't know

Example 4-7, Effective Rates

New car costs \$15,732; 48 monthly payments of \$398. What is monthly interest rate? Effective annual rate?

A student is borrowing \$1000/yr for 3 years. The loan will be repaid 2 years later at 15% interest rate. Find F.

 $= 1000(F/P, 15\%, 4) + 1000(F/P, 15\%, 3) + 1000(F/P, 15\%, 2)$ $= 1000(1.749) + 1000(1.521) + 1000(1.322) = 4592

$$
F_3 = 1000 (F/A, 15\%, 3)
$$

= 1000(3.472) = \$3472

$$
F = F_3(F/P, 15\%, 2)
$$

= 3472(1.322) = \$4590

or

 $F = 1000(F/A, 15\%, 3)(F/P, 15\%, 2)$ $= 1000(3.472)(1.322) = 4590

What must be deposited in a saving account paying 15% interest, to support 3 later withdrawals?

 $P = P_1 + P_2 + P_3$ = 2000(*P*/*F*,15%,2) + 3000(*P*/*F*,15%,3) + 2000(*P*/*F*,15%,4) $= 2000(0.7561) + 3000(0.6575) + 2000(0.5718) = 4628

 $P = P_1 (P/F, 15\%, 1)$ = [2000(*P*/*A*,15%,3) + 1000(*P*/*F*,15%,2)](*P*/*F*,15%,1) $=[2000(2.283) + 1000(0.7561)](0.8696) = 4628

Relationships Between Compound Interest Factors

Single Payment
\n
$$
(F/P, i, n) = \frac{1}{(P/F, i, n)}
$$
\n(4-8)

Uniform Series

$$
(A/P, i, n) = \frac{1}{(P/A, i, n)}
$$
(4-9)

$$
(F/A, i, n) = \frac{1}{(A/F, i, n)}
$$
(4-10)

Relationships Between Compound Interest Factors

Uniform Series
\n
$$
(P/A, i, n) = \sum_{t=1}^{n} (P/F, i, t)
$$
\n(4-11)
\n
$$
(F/A, i, n) = 1 + \sum_{t=1}^{n-1} (F/P, i, t)
$$
\n(4-12)

 $(A/P, i, n) = (A/F, i, n) + i$ (4-13)

Arithmetic Gradient

Examples:

- Operating & maintenance costs \mathcal{L}^{max}
- Salary packages \mathbf{r}

Arithmetic Gradient

Notation:

 $G = a$ fixed amount increment or decrement per time period

 $P = 120 (P/A, 5\%, 5) + 30 (P/G, 5\%, 5)$ $= 120 (4.329) + 30 (8.237)$ $= 766

 $A = 100 + 100 (A/G, 6%, 4)$ $= 100 + 100(1.427) = 242.70

- $P_3 = 150(P/A, 10\%, 4) + 25(P/G, 10\%, 4)$ $= 150(3.170) + 25(4.378)$ $=$ \$584.95
- $P_0 = P_3 (P/F, 10\%, 3)$ $= 584.95(0.7513)$ $= 439.47

Reality & Assumed Uniformity of A, G, & g

- Most future costs & benefits won't be uniform
	- Even so uniformity usually assumed
- Simpler models are easier to use
- Tabulated factors & spreadsheet annuity functions assume uniformity
- Engineering economy used in decision-making at feasibility & preliminary analysis stages
	- Not enough is known for estimates to be more detailed

Geometric Gradient

Notation:

 $g = a$ constant growth rate $(+ or -)$ per period A_1 = cash flow at period 1

Example 4-15 Geometric Gradient

At 8% interest find the PW of maintenance costs that are \$100 the first year & then increasing at 10% per year until the end year 5.

$$
P = A_1 \left[\frac{1 - (1 + g)^n (1 + i)^{-n}}{i - g} \right]
$$

$$
=100\left[\frac{1-(1+10\%)^5(1+8\%)^{-5}}{8\% - 10\%}\right]
$$

 $= 480.42

Spreadsheets for Economic Analysis

- 1. Constructing tables of cash flows
- 2. Using annuity functions for P, F, A, ⁿ, or *i*
	- PV, FV, PMT, NPER, RATE
- 3. Block functions to find NPV or IRR
- 4. Making graphs
- 5. Conducting what-if analysis

Spreadsheet Annuity Functions (introduced in Chapter 3)

Build Amortization Table

- Borrow \$4000
- $N = 5$ years
- $i = 10\%$
- Equal annual payments
- \blacksquare $A =$

Amortization Table

Spreadsheet Block Functions

NPV & IRR are Block Functions for Cash Flow Tables

■ Assume 1 cash flow per period

- Equal length periods
- Interest rate for that period
- Not restricted to any pattern

■ 0 must not be left as blank cell for cash flows

- NPV (net present value) is a Present Worth
	- Periods 1 to $N \rightarrow$ The first cell is **NOT** period 0 !
- IRR (internal rate of return) is interest rate
	- \blacksquare PW at IRR = 0
	- [◼] Periods 0 to N → **The first cell IS period 0 !**
- Assumptions for period 0 are different, arbitrary, & critical.

Use the NPV Function

First calculate the NPV of the positive cash flows

 $=$ NPV(A1, B5:B9) = 216.47

Notice that this returns a positive number

 $PW = B4 + NPV(A1, B5:B9)$ $= 16.47

NPV, Different Cash Flows

With different cash flows, We cannot use the PV function. Must use NPV function.

 $PW = B4 + NPV(A1, B5:B9)$ $= 12.25

Another NPV Advantage

Remember that NPV will discount the first cash flow, so start at year 1 & include it's zero value.

There is no G function in Excel Use the NPV function

IRR: =IRR(CF1:CF2)

What is the IRR?

 $=$ IRR(B4:B9) = 6.91%

At this rate the PW of the cash flows is 0.

Example 4-15 Geometric Gradient

EXAMPLE 4-15

The first-year maintenance cost for a new car is estimated to be \$100, and it increases at a uniform rate of 10% per year. Using an 8% interest rate, calculate the present worth (PW) of the cost of the first 5 years of maintenance.

Example 4-15 Geometric Gradient

Spreadsheet approach

Note use of the data block; cells in Column B use cell referencing, are copied

 $1st cost = $750,000$. $1st year net revenue = $225,000, increasing either$ (a) \$25,000 per yr. or (b) decreasing 10% per yr. or (c) increase by \$25,000 for 1 yr. then decrease by 10% per yr. MARR = 12% ; n = 5 yrs. Find PW & IRR for each scenario.

Example 4-16 **Gradients**

Example 4-17 Compounding Period & Payment Period Differ

On Jan. 1, deposit \$5000 that pays 8% nominal annual interest, compounded quarterly. Withdraw in 5 equal yearly sums, beginning December 31 of the first year. How much is withdrawn each year?

Compute equivalent A for each quarter

A = *P*(*A*/*P*, *i*, *n*) = 5000(*A*/*P*, 2%, 20) = 5000(0.0612) = \$306 For each 1-year time period,

W = *A*(*F*/*A*, *i*, *n*) = 306((*F*/*A*,2%,4) = 306(4.122) = \$1260