Engineering Economic Analysis

FOURTEENTH EDITION

Chapter 4

Equivalence for Repeated Cash Flows

Donald G. Newnan San Jose State University

Ted G. Eschenbach University of Alaska Anchorage

Jerome P. Lavelle North Carolina State University

Neal A. Lewis Fairfield University

> OXFORD UNIVERSITY PRESS

Chapter Outline

- Uniform Series Compound Interest Formulas
- Cash Flows That Do Not Match Basic Patterns
- Economic Equivalence Viewed as a Moment Diagram
- Relationships Between Compound Interest Factors
- Arithmetic Gradient
- Geometric Gradient
- Spreadsheets for Economic Analysis
- Compounding Period & Payment Period Differ

Learning Objectives

- Solve problems using uniform series compound interest formulas
- Use arithmetic & geometric gradients in modeling economic analysis
- Understand why cash flows assume uniformity
- Use spreadsheet to model & solve economic analysis problems

Vignette: Student Solar Power

Indiana State University (ISU) mechanical & manufacturing engineering technology students designed a photovoltaic system to make use of solar energy in 2008.

- 2-axis tracking system
- 4 PV panels of 123 watts each, life of 25 yrs..
- Most electrical parts provided free by the college CIM Lab.

Vignette: Student Solar Power

- 1. Panels were purchased by ISU 5 years ago. Is the purchase cost a sunk cost?
- 2. How much difference due to a city's longitude if same panel installed there?
- 3. How important are latitude & yearly days of sunshine in system economics?
- 4. What costs must be considered & how can they be estimated over time?
- 5. How to compute the annual savings? Do panels decline in efficiency each year?

Uniform Series Compound Interest Formulas

A = end of period cash flow in a uniform series

Examples:

- Automobile loans, mortgage payments, insurance premium, rents, & other periodic payments
- Estimated future costs & benefits

Uniform Series Compound Interest Formulas

Uniform Series Compound Amount Factor

$$F = A\left[\frac{(1+i)^{n} - 1}{i}\right] = A(F/A, i, n)$$
(4-4)

Uniform Series Sinking Fund Factor

$$A = F\left[\frac{i}{(1+i)^n - 1}\right] = F(A/F, i, n)$$
(4-5)

Example 4-1 Uniform Series Compound Interest Formulas

\$500 deposited in a credit union (pays 5% compounded annually) at the end of each year for 5 years, how much do you have after the 5th deposit?

$$0 \xrightarrow{1}{2} 3 \xrightarrow{4}{5} F = A \left[\frac{(1+i)^n - 1}{i} \right] = A(F/A, i, n)$$

$$0 \xrightarrow{1}{2} 3 \xrightarrow{4}{5} F = A \left[\frac{(1+i)^n - 1}{i} \right] = A(F/A, i, n)$$

$$= 500(F/A, 5\%, 5) = 500(5.526)$$

$$= \$2763$$

	Α	В	С	D	E	F	G	Н
1	ID	i	n	PMT	PV	FV	Answer	Formula
2	4-1	5%	5	-500	0		\$2,762.82	=FV(B2,C2,D2,E2)

Example 4-2 Uniform Series; Multiple Cash Flows

Initial deposit = \$685; \$375 deposited monthly. Interest rate = 6%, monthly compounding. How much is saved after 48 months?

	Α	В	С	D	E	F	G	Н
1	ID	i	n	PMT	PV	FV	Answer	Formula
2	4-2	0.5%	48	-375	-685		\$21,156.97	=FV(B2,C2,D2,E2)

F = 375(F/A, 0.5%, 48) + 685(F/P, 0.5%, 48) = \$21,156.7

You deposit \$200 now in account earning 3%.

After 5 years the value in account is \$206.00

- A. \$206.00
- в. \$231.85
- **c.** \$218.00
- D. −\$231.85
- E. None of the above

You deposit \$200 in account earning 3%.

After 5 years the value in account is

- A. \$206.00
- B. \$231.85 = 2000= FV(3)
- = 200(F/P, 3%, 5) = 200(1.159)
- B. $\mathcal{P}ZJ1.0J = FV(3\%, 5, 0, -200)$
- **c**. \$218.00
- D. −\$231.85
- E. None of the above

You deposit \$200 at end of each year in account earning 6%.

After 5 years the value in account is -\$267.65

- в. \$1060
- c. \$1127.42
- D. \$1360.38
- E. None of the above

You deposit \$200 at end of each year in account earning 6%.

After 5 years the value in account is

- A. -\$267.65
- в. \$1060

- = 200(F/A, 6%, 5) = 200(5.637)
- c. \$1127.42

$$= FV(6\%, 5, -200)$$

- D. \$1360.38
- E. None of the above

Example 4-3

How much must Jim deposit at the end of each month to get \$1000 at year end? Bank pays 6% interest compounded monthly.

$$i_{mo} = \frac{6\%}{12} = 0.5\%$$

 $A = F(A/F, i, n) = 1000(A/F, 0.5\%, 12)$
 $= 1000(0.0811) = 81.10

	Α	В	С	D	E	F	G	Н
1	ID	i	n	PMT	PV	FV	Answer	Formula
2	4-3	0.5%	12		0	1000	-\$81.07	=PMT(B2,C2,E2,F2)

- - -

Uniform Series Compound Interest Formulas

Uniform Series Capital Recovery Factor

$$A = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] = P(A/P, i, n) \quad (4-6)$$

Uniform Series Present Worth Factor

$$P = A\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right] = A(P/A, i, n)$$
(4-7)

The Annuity Functions

See Appendix B

	Α	В	С	D	E	F	G	Н	
1	Problem	i	n	PMT	PV	FV	Solve for	Answer	Formula
2	B-1	5.0%	2	0		110.25	PV	-\$100.00	=PV(B2,C2,D2,F2)
3	B-2	7.0%	3	-3000	-5000		FV	\$15,770	=FV(B3,C3,D3,E3)
4	B-3	3.5%	3		1500	200	PMT	-\$599.79	=PMT(B4,C4,E4,F4)
5	B-4		5	-250	1000	100	RATE	5.15%	=RATE(C5,D5,E5,F5)
6	B-5	6.25%		450	-2000	0	N	5.37	=NPER(B6,D6,E6,F6)

A machine costs \$5000 & lasts 5 years. If interest is 8%, how much must be saved annually to recover the investment?

$$A = P(A/P, i, n)$$

5000

$$A = P(A/P, i, n)$$

$$= 5000(A/P, 8\%, 5) = 5000(0.2505) = $1252.50$$

	Α	В	С	D	E	F	G	Н
1	ID	i	n	PMT	PV	FV	Answer	Formula
2	4-4	8.0%	5		-5000	0	\$1,252.28	=PMT(B2,C2,E2,F2)

To have \$1M after 40 years in account earning 6%

Your annual deposit must be

- A. \$6096
- в. \$25,000
- c. \$12,649
- D. \$6462
- E. None of the above

To have \$1M after 40 years in account earning 6%

Your annual deposit must be

- A. \$6096
- в. \$25,000
- c. \$12,649 = 1M(A/F, 6%, 40) = 1M(0.00646)
- D. \$6462 = PMT(6%, 40, 0, -1000000)
- E. None of the above

Example 4-5

A machine costs \$30,000, O&M = \$2000/yr. Savings = \$10,000/yr. Salvage @ 5 yrs = \$7000. *i* = 10%. PW = ??

P = -30,000 + (10,000 - 2000)(P/A, 10%, 5) + 7000(P/F, 10%, 5)= -30,000 + (8,000)(3.791) + 7000(0.6209) = \$4672

	Α	В	С	D	E	F	G	Н
1	ID	i	n	PMT	PV	FV	Answer	Formula
2	4-5	10%	5	8000		7000	-\$34,672.74	=PV(B2,C2,D2,F2)
3							\$34,672.74	-G2
4					-30,000		4,672.74	=+G3+E4

Example 4-6, Find Rate of Return

A machine costs \$30,000, O&M = \$2000/yr. Savings = \$10,000/yr. Salvage @ 5 yrs = \$7000. ROR= ??

	Α	В	С	D	E	F	G	Н	
1	Problem	i	n	PMT	PV	FV	Solve for	Answer	Formula
2	Exp. 4-6		5	8000	-30000	7000	RATE	15.38%	=RATE(C2,D2,E2,F2)

0 = -30,000 + (10,000 - 2000)(P/A, i, 5) + 7000(P/F, i, 5)

To solve with tabulated factors assume the interest rate & see if the PW = 0

Example 4-6, Find Rate of Return

Try 15% $P_{15} = -30,000 + (10,000 - 2000)(P/A, 15\%, 5) + 7000(P/F, 15\%, 5)$ $P_{15} = -30,000 + (8000)(3.352) + 7000(.4972) = 296.4 Try 18% $P_{18} = -30,000 + (10,000 - 2000)(P/A, 18\%, 5) + 7000(P/F, 18\%, 5)$ $P_{15} = -30,000 + (8000)(3.127) + 7000(.4371) = -1924.3

By interpolation, i = 15.4%

Interpolation

Find the value of x using interpolation

Interest rate	Value
2%	10.950
3%	Х
4%	12.006

A. 11.5
B. 11.464
C. 11.478
D. I don't know

Find the value of x using interpolation

Inter	rest rate	Value	
	2%	10.950	
	3%	X	
	4%	12.006	
 A. 11.5 B. 11.464 C. 11.478 D. I don't know 	4%-	$\frac{2\%}{2\%} = \frac{x - 10}{12.006 - x}$	

The firm invests \$75,000 to save \$9000/year in energy costs for 15 yrs

What is the project's rate of return?

- A. 8.44%
- в. 0.08%
- c. 8%
- D. 9.36%
- E. I don't know

The firm invests \$75,000 to save \$9000/year in energy costs for 15 yrs

What is the project's rate of return?

- A. 8.44% = RATE(15,9000,-75000)
- в. 0.08%
- c. 8%
- D. 9.36%
- E. I don't know

Example 4-7, Effective Rates

New car costs \$15,732; 48 monthly payments of \$398. What is monthly interest rate? Effective annual rate?

	Α	В	С	D	E	F	G	Н	1
1	Problem	i	n	PMT	PV	FV	Solve for	Answer	Formula
2	Exp. 4-7		48	-398	15,732	0	i	0.822%	=RATE(C2,D2,E2,F2)
3		monthly						annual	
4	Effective	0.822%	12	0	-1			1.1032	=FV(B4,C4,D4,E4)
5	or						i _a	10.33%	=FV-1
6	Nominal	0.822%	12				r	9.86%	=B6*C6
7	Effective	9.86%	12				ia	10.32%	=EFFECT(B7,C7)

Example 4-8

A student is borrowing \$1000/yr for 3 years. The loan will be repaid 2 years later at 15% interest rate. Find *F*.

Year	Cash Flow
1	+1000
2	+1000
3	+1000
4	0
5	-F

Example 4-8, Solution #1

= 1000(1.749) + 1000(1.521) + 1000(1.322) = \$4592

Example 4-8, Solution #2

$$F_3 = 1000(F/A, 15\%, 3)$$

= 1000(3.472) = \$3472

$$F = F_3(F/P, 15\%, 2)$$

= 3472(1.322) = \$4590

or

F = 1000(F/A, 15%, 3)(F/P, 15%, 2)= 1000(3.472)(1.322) = \$4590

Example 4-8, Solution #3

1	А	В	С	D	E	F	G	Н
1	Problem	i	n	PMT	PV	FV	Solve for	Answer
2	Exp. 4-8	15%	3	1000	0		F ₃	-\$3,472.50
3		15%	2	0	-3472.50		F	\$4,592.38
4					=-H2			

Example 4-9

What must be deposited in a saving account paying 15% interest, to support 3 later withdrawals?

Year	Cash Flow
0	-P
1	0
2	+2000
3	+3000
4	+2000

Example 4-9, Solution #1

$$\begin{split} P &= P_1 + P_2 + P_3 \\ &= 2000(P/F, 15\%, 2) + 3000(P/F, 15\%, 3) + 2000(P/F, 15\%, 4) \\ &= 2000(0.7561) + 3000(0.6575) + 2000(0.5718) = \$4628 \end{split}$$

Example 4-9, Solution #2

Example 4-9, Solution #3

 $P = P_1 (P/F, 15\%, 1)$ = [2000(P/A, 15\%, 3) + 1000(P/F, 15\%, 2)](P/F, 15\%, 1) = [2000(2.283) + 1000(0.7561)](0.8696) = \$4628

Example 4-9, Solution #4

	А	B	С	D	E	F	G	Н
1	Problem	i	n	PMT	PV	FV	Solve for	Answer
2	Exp. 4-9	15%	2	0		2000	P ₁	-\$1,512.29
3		15%	3	0		3,000	P ₂	-\$1,972.55
4		15%	4	0		2,000	P ₃	-\$1,143.51
5							Р	-\$4,628.34

Relationships Between Compound Interest Factors

Single Payment

$$(F/P, i, n) = \frac{1}{(P/F, i, n)}$$
(4-8)

Uniform Series

$$(A/P, i, n) = \frac{1}{(P/A, i, n)}$$
(4-9)
$$(F/A, i, n) = \frac{1}{(A/F, i, n)}$$
(4-10)

Relationships Between Compound Interest Factors

Uniform Series

$$(P/A, i, n) = \sum_{t=1}^{n} (P/F, i, t)$$
 (4-11)
 $(F/A, i, n) = 1 + \sum_{t=1}^{n-1} (F/P, i, t)$ (4-12)

(A/P, i, n) = (A/F, i, n) + i (4-13)

Arithmetic Gradient

Examples:

- Operating & maintenance costs
- Salary packages

Arithmetic Gradient

Notation:

G = a fixed amount increment or decrement per time period

Year	Cash Flow
1	120
2	150
3	180
4	210
5	240

P = 120(P/A, 5%, 5) + 30(P/G, 5%, 5)= 120(4.329) + 30(8.237) = \$766

Year	Cash Flow
1	100
2	200
3	300
4	400

A = 100 + 100(A/G, 6%, 4)= 100 + 100(1.427) = \$242.70

Year	Cash Flow
4	150
5	175
6	200
7	225

 $P_3 = 150(P/A, 10\%, 4) + 25(P/G, 10\%, 4)$ = 150(3.170) + 25(4.378) = \$584.95

$$P_0 = P_3(P/F, 10\%, 3)$$

= 584.95(0.7513)
= \$439.47

Reality & Assumed Uniformity of *A*, *G*, & *g*

- Most future costs & benefits won't be uniform
 - Even so uniformity usually assumed
- Simpler models are easier to use
- Tabulated factors & spreadsheet annuity functions assume uniformity
- Engineering economy used in decision-making at feasibility & preliminary analysis stages
 - Not enough is known for estimates to be more detailed

Geometric Gradient

Notation:

g = a constant growth rate (+ or -) per period A_1 = cash flow at period 1

Example 4-15 Geometric Gradient

At 8% interest find the PW of maintenance costs that are \$100 the first year & then increasing at 10% per year until the end year 5.

$$P = A_1 \left[\frac{1 - (1+g)^n (1+i)^{-n}}{i-g} \right]$$

$$= 100 \left[\frac{1 - (1 + 10\%)^5 (1 + 8\%)^{-5}}{8\% - 10\%} \right]$$

= \$480.42

Spreadsheets for Economic Analysis

- 1. Constructing tables of cash flows
- 2. Using annuity functions for *P*, *F*, *A*, *n*, or *i*
 - PV, FV, PMT, NPER, RATE
- 3. Block functions to find NPV or IRR
- 4. Making graphs
- 5. Conducting what-if analysis

Spreadsheet Annuity Functions (introduced in Chapter 3)

Excel Functions	Purpose
PV(RATE,NPER,PMT,[FV],[TYPE])	Find P
FV(RATE,NPER,PMT,[PV],[TYPE])	Find <i>F</i>
PMT(RATE,NPER,PV,[FV],[TYPE])	Find A
NPER(RATE,PMT,PV,[FV],[TYPE])	Find <i>n</i>
RATE(NPER,PMT,PV,[FV],[TYPE],[GUESS])	Find <i>i</i>

Build Amortization Table

- Borrow \$4000
- N = 5 years
- *i* = 10%
- Equal annual payments
- *A* =

Amortization Table

4000	Amount bo		
5	Ν		
10%	i		
\$1,055.19	payment		
			Balance
Period	Interest	Principal	Due
0			4000.00
1	400.00	655.19	3344.81
2	334.48	720.71	2624.10
3	262.41	792.78	1831.32
4	183.13	872.06	959.26
5	95.93	959.26	0.00

Spreadsheet Block Functions

Excel Functions	Purpose
NPV (<i>i, CF₁:CF_n</i>)	To find net present value of a range of cash flows (from period 1 to n) at a given interest rate
IRR (CF ₀ :CF _n , [guess])	To find internal rate of return from a range of cash flows (from period 0 to n)

NPV & IRR are Block Functions for Cash Flow Tables

Assume 1 cash flow per period

- Equal length periods
- Interest rate for that period
- Not restricted to any pattern

• 0 must not be left as blank cell for cash flows

- NPV (net present value) is a Present Worth
 - Periods 1 to *N* → The first cell is *NOT* period 0 !
- IRR (internal rate of return) is interest rate
 - PW at IRR = 0
 - Periods 0 to $N \rightarrow$ The first cell *IS* period 0 !
- Assumptions for period 0 are different, arbitrary, & critical.

Use the NPV Function

First calculate the NPV of the positive cash flows

=NPV(A1, B5:B9) = 216.47

Notice that this returns a positive number

PW = B4+NPV(A1,B5:B9) = \$16.47

	Α	В
1	5%	interest rate
2		
3	Year	Cash Flow
4	0	-200
5	1	50
6	2	50
7	3	50
8	4	50
9	5	50
10	NPV, 1-5	\$216.47
11	PW	\$16.47

NPV, Different Cash Flows

With different cash flows, We cannot use the PV function. Must use NPV function.

	Α	B
1	5%	interest rate
2		
3	Year	Cash Flow
4	0	-200
5	1	30
6	2	40
7	3	50
8	4	60
9	5	70
10	NPV, 1-5	\$212.25
11	PW	\$12.25

Another NPV Advantage

Remember that NPV will discount the first cash flow, so start at year 1 & include it's zero value.

There is no G function in Excel Use the NPV function

				i	=14%			280	340	400 ↑
	Α	В	С		100	160	220 1		Î	
1	Period	Cash Flow			<u> </u>					
2	0			$\mathbf{\hat{\mathbf{A}}}$	1	O	0	1	5	C
3	1	100		0	I	2	3	4	5	6
4	2	160								
5	3	220								
6	4	280								
7	5	340								
8	6	400								
9	NPV	\$883.93								
10		=NPV(14%	6 <mark>,B3:B8)</mark>							

IRR: =IRR(CF1:CF2)

What is the IRR?

=IRR(B4:B9) = 6.91%

At this rate the PW of the cash flows is 0.

	Α	B
1	5%	interest rate
2		
3	Year	Cash Flow
4	0	-200
5	1	30
6	2	40
7	3	50
8	4	60
9	5	70
10	NPV, 1-5	\$212.25
11	PW	\$12.25
12	IRR	6.91%

Example 4-15 Geometric Gradient

EXAMPLE 4-15

The first-year maintenance cost for a new car is estimated to be \$100, and it increases at a uniform rate of 10% per year. Using an 8% interest rate, calculate the present worth (PW) of the cost of the first 5 years of maintenance.

Example 4-15 Geometric Gradient

Spreadsheet approach

Note use of the data block; cells in Column B use cell referencing, are copied

	Α	В	С
1	Example	4-15	
2	8%	interest rate	
3	5	years	
4	\$100	initial cost	
5	10%	increase	
6			
7	Year	Cost	Formula
8	1	\$100.00	=+A4
9	2	\$110.00	=+B7*(1+A\$5)
10	3	\$121.00	=+B8*(1+A\$5)
11	4	\$133.10	=+B9*(1+A\$5)
12	5	\$146.41	=+B10*(1+A\$5)
13	NPV	\$480.43	=NPV(A2,B7:B11)

 $1^{st} \cos t = \$750,000$. 1^{st} year net revenue = \$225,000, increasing either (a) \$25,000 per yr. or (b) decreasing 10% per yr. or (c) increase by \$25,000 for 1 yr. then decrease by 10% per yr. MARR = 12%; n = 5 yrs. Find PW & IRR for each scenario.

Example 4-16 Gradients

1	А	В	C	D
1	\$750,000	First cost		
2	12%	Interest rate		
3	\$225,000	Year 1 net revenue		
4	Scenario	а	b	С
5	Gradient	Arithmetic	Geometric	
6		G	g	both
7	Value	\$25,000	-10%	
8	Year			
9	0	-\$750,000	-\$750,000	-\$750,000
10	1	225,000	225,000	225,000
11	2	250,000	202,500	250,000
12	3	275,000	182,250	225,000
13	4	300,000	164,025	202,500
14	5	325,000	147,623	182,250
15				
16	PW	\$221,000	-\$69,948	\$42,448
17	Rate of Return	22.6%	7.9%	14.4%

Example 4-17 Compounding Period & Payment Period Differ

On Jan. 1, deposit \$5000 that pays 8% nominal annual interest, compounded quarterly. Withdraw in 5 equal yearly sums, beginning December 31 of the first year. How much is withdrawn each year?

Compute equivalent A for each quarter

A = P(A/P, i, n) = 5000(A/P, 2%, 20) = 5000(0.0612) = \$306For each 1-year time period, W = A(F/A, i, n) = 306((F/A, 2%, 4)) = 306(4.122) = \$1260