
CS466 – SOFTWARE PROCESS

AGILE & ITERATIVE
DEVELOPMENT (CHAPTER 6)

A MANAGER’S GUIDE BY: CRAIG LARMAN

WEEK 6: EVIDENCE

BY: JOSEPH MARTINAZZI

EVIDENCE
WHAT ARE THE MOST EXCITING, PROMISING SOFTWARE ENGINEERING IDEAS OR TECHNIQUES ON THE
HORIZON?

I DON’T THINK THAT THE MOST PROMISING IDEAS ARE ON THE HORIZON. THEY ARE ALREADY HERE AND HAVE
BEEN FOR YEARS BUT ARE NOT BEING USED PROPERLY. – DAVID L. PARNAS

TODAY’S LECTURE FOCUSES ON WHY ITERATIVE AND INCREMENTAL DEVELOPMENT (IID) HAS A HIGHER
PROBABILITY OF SUCCESS COMPARED TO THE WATERFALL MODEL. TOPICS THAT WILL BE COVERED INCLUDE:

1. RESEARCH EVIDENCE – STUDIES THAT PROVE PROGRAMS THAT USE AN IID APPROACH HAVE LOWER RISK, ARE MORE
EFFICIENT, AND PRODUCES A HIGHER QUALITY PRODUCT.

2. EARLY LARGE PROJECT EVIDENCE – EXAMPLES OF LIFE-CRITICAL SYSTEMS THAT HAVE SUCCESSFULLY BEEN
DEVELOPED USING AN IID APPROACH.

3. STANDARDS-BODY EVIDENCE – DESCRIBES HOW THE DOD ADOPTED MIL-STD-498 IN 1987 THAT UTILIZES ITERATIVE
AND EVOLUTIONARY METHODS.

4. EXPERT THOUGHT LEADER EVIDENCE – EXAMPLES OF PROMINENT SOFTWARE ENGINEERS AND THEIR
RECOMMENDATION TO ADOPT AN IID APPROACH TO SOFTWARE DEVELOPMENT.

5. A BUSINESS CASE – A COMPARISON OF AN IID APPROACH TO SOFTWARE DEVELOPMENT VS. A SERIAL WATERFALL
APPROACH.

6. WATER FALL PROBLEMS AND WHY IT IS STILL PROMOTED – COMPANIES LIKE THE IDEA OF “REQUIREMENT
DEVELOPMENT IS COMPLETE” PRIOR TO BEGINNING SOFTWARE DEVELOPMENT.

1. RESEARCH EVIDENCE
THE AUTHOR POINTS TO VARIOUS STUDIES THAT SHOW EVOLUTIONARY DEVELOPMENT RESULTS IN A
HIGHER PROBABILITY OF SUCCESS COMPARED TO PROGRAMS THAT FOLLOW A WATERFALL MODEL.

A STUDY LEAD BY ALAN MAC CORMACK [MACCORMACK01] IDENTIFIED 4 PRACTICES THAT WERE COMMON
ACROSS THE MOST SUCCESSFUL PROGRAMS. THESE PROGRAMS:

1. FOLLOWED AN IID PROCESS WHICH EMPHASIZED AN EARLY RELEASE OF THE PRODUCT TO THE STAKEHOLDERS
FOR REVIEW AND FEEDBACK. [COMMON AMONG ALL IID] – “SOFTWARE DEVELOPMENT BEST PRACTICE”

2. DAILY INCORPORATION OF NEW SOFTWARE ONTO A REGRESSION TESTED BUILD. [COMMON AMONG ALL IID]

3. A TEAM EXPERIENCED IN SHIPPING MULTIPLE PROJECTS.

4. EARLY ATTENTION TO SYSTEM ARCHITECTURE AND COUPLING OF MAJOR COMPONENTS [UP PRACTICE]

DEFECT DENSITY IS THE NUMBER OF DEFECTS FOUND IN THE SOFTWARE/MODULE DURING A SPECIFIC
PERIOD OF OPERATION OR DEVELOPMENT DIVIDED BY THE SIZE OF THE SOFTWARE/MODULE. IT ENABLES
ONE TO DECIDE IF A PIECE OF SOFTWARE IS READY TO BE RELEASED. DEFECT DENSITY IS COUNTED PER
THOUSAND LINES OF CODE ALSO KNOWN AS KLOC.

1. RESEARCH EVIDENCE
A FOLLOW-UP STUDY LEAD BY MAC CORMACK [MKCC03] IDENTIFIED 2 DRIVING IID FACTORS
THAT IMPACTED DEFECT DENSITY.

• BY RELEASING THE SYSTEM EARLY (E.G. WHEN 20% OF THE FUNCTIONALITY WAS COMPLETE VS.
40%), THE ESCAPING DEFECT RATE DECREASED BY 10 DEFECTS/MONTH PER MILLION LINES OF
CODE.

• BY CONTINUOUSLY INTEGRATING CODE ONTO A REGRESSION TESTED DAILY BUILD, THE ESCAPING
DEFECT RATE DECREASED BY 13 DEFECTS/MONTH PER MILLION LINES OF CODE.

THIS IMPLIES THAT MORE IN-PHASE DEFECTS WERE DETECTED DURING CODE/UNIT TEST MAKING
THEM CHEAPER TO FIX!
(ON PAGE 79 OF THE TEXT, THE AUTHOR STATES SEVERAL CASE STUDIES REPORT LOWER DEFECT DENSITIES
ARE ASSOCIATED WITH IID METHODS [MANZO02], HOWEVER THEY ARE NOT STATISTICALLY RELIABLE.)

THE SAME STUDY ALSO IDENTIFIED THAT THESE SAME FACTORS IMPACTED PRODUCTIVITY.

• BY RELEASING THE PRODUCT EARLY (E.G. WHEN 20% OF THE FUNCTIONALITY WAS COMPLETE VS.
40%), 8 ADDITIONAL LINES OF SOURCE CODE WERE PRODUCED BY EACH PERSON DAILY.

• BY CONTINUOUSLY INTEGRATING CODE ONTO A REGRESSION TESTED DAILY BUILD, 17
ADDITIONAL LINES OF SOURCE CODE WERE PRODUCED BY EACH PERSON DAILY.

1. RESEARCH EVIDENCE

ANOTHER LARGE STUDY CONDUCTED BY THE STANDISH GROUP [STANDISH98]
ANALYZED 23,000 PROJECTS. THIS STUDY FOUND THAT 4 OF THE TOP 5 FACTORS
IN SUCCESSFUL PROJECTS WERE RELATED TO IID METHODOLOGIES.

HIGH USER INVOLVEMENT – WITH SHORT ITERATIONS, DEMOS, REVIEWS, EVOLUTIONARY
REQUIREMENT REFINEMENT, AND CLIENT DRIVEN ITERATIONS

EXECUTIVE SUPPORT – FOCUSED ON TANGIBLE RESULTS

CLEAR BUSINESS OBJECTIVES – DRIVEN BY CLIENT-DRIVEN PLANNING

EXPERIENCED PROJECT MANAGER

SMALL MILESTONES – ARE AT THE HEART OF THE IID METHODOLOGY

1. RESEARCH EVIDENCE – SIZE RESEARCH
THIS SAME STUDY [STANDISH98] ALSO ANALYZED
PROJECT SUCCESS, BASED ON THE PROJECT COMPLETING
WITHIN COST/SCHEDULE AND CONTAINING ALL THE
SPECIFIED FUNCTIONALITY, IN RELATIONSHIP TO
DURATION. AS SHOWN IN THE GRAPH TO THE LEFT;
SMALLER PROJECTS THAT COMPLETED IN SEVERAL
MONTHS EXPERIENCED A HIGHER SUCCESS RATE THAN
LARGER PROJECTS LASTING 36 MONTHS.

• SMALL PROJECTS ARE LESS COMPLEX AND TAKE
LESS TIME TO COMPLETE.

• FOR A LARGE PROJECT TO BE SUCCESSFUL, IT MUST
BE BROKEN DOWN INTO SMALL (LESS COMPLEX)
ITERATIONS.

THIS TREND WAS CONFIRMED BY A FOLLOW-UP STUDY
SPANNING 35,000 PROJECTS [STANDISH00] THAT
FOCUSED ON COST.

• SMALL PROJECTS ARE LESS COSTLY TO COMPLETE.

• FOR A LARGE PROJECT TO BE SUCCESSFUL, IT MUST
BE BROKEN DOWN INTO SMALL (LESS COMPLEX)
ITERATIONS.

0 5 10 15 20 25 30 35 40
0%

10%

20%

30%

40%

50%

60%

70%

Project Success (23,000 projects)
vs. Duration (months)

Cost <0.5 M 0.5M-3M 3M - 6M 6M-10M >10 M

Success 68% 22% 9% 1% 0%
UP, XP, &
SCRUM

1. RESEARCH EVIDENCE – CHANGE RESEARCH
THE FOLLOWING GRAPH IS BASED ON
RESULTS FROM MULTIPLE LARGE-SCALE
SOFTWARE DEVELOPMENT PROJECTS.
[JONES97]

• IT ILLUSTRATES THAT AS THE
COMPLEXITY OF THE PROJECT
INCREASES (FUNCTION POINTS) THE
AMOUNT OF REQUIREMENT CHANGE
(OR CREEP) ALSO INCREASES.

• MEDIUM SIZE PROJECTS HAVE A
CHANGE RATE OF 25%

• LARGE SIZE PROJECTS HAVE A CHANGE
RATE OF 35%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Project Size in Function
Points

THIS ENFORCES THE CONCEPT THAT AN ITERATIVE LIFECYCLE MODEL HAS A
BETTER CHANCE OF SUCCESS THAN A SEQUENTIAL LIFECYCLE MODEL SINCE IT
CAN ADAPT BETTER TO CHANGING REQUIREMENTS, FOCUSES ON ARCHITECTURE
AND HIGH-RISK REQUIREMENTS EARLY, HAS A BETTER PRODUCTIVITY RATE, AND
A PRODUCES A HIGHER QUALITY PRODUCT (ONE WITH FEWER DEFECTS).

Typical SW project
experiences a 25%

% change rate.

1. RESEARCH EVIDENCE – CHANGE RESEARCH
• IN ANOTHER STUDY THE AUTHOR STATES THAT

UP-FRONT SPECIFICATION WITH A SIGN-OFF CAN
NOT BE SUCCESSFULLY CREATED AND THAT A
STUDY SHOWED THAT 45% OF THE FEATURES
CREATED FROM EARLY SPECIFICATION WERE
NEVER USED, WITH AN ADDITIONAL 19%
RARELY USED [JOHNSON02]

• THE AUTHOR THEN PROCEEDED TO SAY “AVOID
PREDICTIVE PLANNING BECAUSE YOU CAN NOT
SIMPLY PLAN THE WORK AND WORK THE PLAN”
WHEN DOING ITERATIVE SOFTWARE
DEVELOPMENT.

• THIS WILL ONLY WORK IF YOU PROJECT IS NOT
FIRM FIXED PRICE OR IF YOUR CUSTOMER HAS
BOUGHT INTO THE IDEA OF YOU DELIVERING A
SYSTEM WITH ONLY 75%-95% OF THE FEATURES
THEY CONTRACTED!

7%
13%

16%

19%

45%

Actual Use of Up-Front
Specifications

Always

Often

Sometimes

Rarely

Never

1. RESEARCH EVIDENCE – WATERFALL FAILURE RESEARCH

THE AUTHOR PROVIDED NUMEROUS EXAMPLES OF
STUDIES SHOWING HOW MOST PROGRAMS FOLLOWING
THE WATERFALL LIFE-CYCLE MODELED FAILED.

1. IN A STUDY OF 1,027 IT PROJECTS IN THE UK
[THOMAS01]THAT USED THE WATERFALL METHODOLOGY;
87% OF THE PROJECTS FAILED. OF THESE FAILED
PROJECTS, 82% CITED THE NUMBER ONE PROBLEM WAS
DEVELOPING ALL THE REQUIREMENTS UP FRONT.

2. PREVIOUSLY THE DEPARTMENT OF DEFENSE (DOD)
REQUIRED PROJECTS TO ADHERE TO STANDARD DOD-
STD-2167 WHICH REQUIRED THE USE OF THE WATERFALL
LIFECYCLE MODEL. THIS RESULTED IN 75% OF THE DOD
PROJECTS FAILING OR NEVER BEING USED.

3. ONE STUDY [JARZOMBEK99] FOUND THAT EVEN THOUGH
46% OF THE SYSTEMS DEVELOPED FOR THE DOD MET
THE SPECIFICATIONS, THEY FAILED TO MEET THE REAL
NEEDS OF THE CUSTOMER AND WERE NEVER
SUCCESSFULLY USED.

4. ANOTHER STUDY IDENTIFIED THAT THE INABILITY TO
DEAL WITH CHANGING REQUIREMENTS AND LATE
INTEGRATION WERE ALSO SIGNIFICANT CONTRIBUTORS
TO FAILED PROJECTS [JONES95].

Wikibooks Creative Commons

1. RESEARCH EVIDENCE – PRODUCTIVITY RESEARCH
• IN A STUDY [JONES00] COMPARED 500

PROJECTS FROM 1997-1999 AND FOUND THAT
AS THE SIZE OF FUNCTION POINTS IN A PROJECT
INCREASES, THE MONTHLY PRODUCTIVITY OF
THE STAFF DECREASES.

THIS MEANS THAT PROJECTS WITH 1,000 OR FEWER
FUNCTION POINTS ARE THE MOST PRODUCTIVE AS
SHOWN IN THE GRAPH TO THE LEFT.

• IN A STUDY[MARTIN91] FOUND THAT
TIMEBOXING ITERATIONS ALSO SIGNIFICANTLY
INCREASED PRODUCTIVITY.

• IN ANOTHER STUDY [JONES00] FOUND THAT
PRODUCTIVITY IS ALSO IMPACTED BY
COMPLEXITY AS SHOWN IN THE TABLE TO THE
LEFT.

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

Productivity vs. Size
(500 projects 1997-1999

Low Complexity High Complexity
Productivity 13% -35%

1. RESEARCH EVIDENCE – QUALITY & DEFECT RESEARCH

• DEFECT REDUCTION COMES FROM AVOIDING
DEFECTS BEFORE THEY OCCUR (DEMING’S TOTAL
QUALITY MANAGEMENT PRINCIPAL) AND FROM
FEEDBACK (PEER REVIEWS, TEST, DEMOS ETC.)

• THE AUTHOR POINT TO VARIOUS STUDIES TO SHOW
THE BENEFITS OF IID:

• [MKCC03] INDICATING IID WAS CORRELATED TO
LOWER DEFECTS,

• [MV101] INDICATING THAT DUE TO LESS TIME
BETWEEN CODING AND TESTING, DEFECT RATES
DECREASE,

• [DECK94] SHOWS A STATISTICALLY SIGNIFICANT
REDUCTION IN DEFECTS USING AN IID APPROACH.

• IID METHODOLOGIES:

• ENCOURAGE CONTINUOUS PROCESS IMPROVEMENT
BY MEASURING, REFLECTING, AND ADJUSTING EACH
ITERATION.

• EMPHASIZES EARLY DEVELOPMENT OF RISKY ITEMS,
DEMOS, AND TEST-DRIVEN DEVELOPMENT.

0 2000 4000 6000 8000 10000 12000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delivered Defects vs. Size

Size in Function Points (FP)

D
e
li
v
e
rd

 D
e
fe

c
ts

/F
P

The author then points to a large case
study by [Jones00] that show defect rates
increase non-linearly as the project size
grows.
Finally, the author states several case
studies report lower defect densities are
associated with IID methods [Manzo02],
however they are NOT statistically
reliable!

2. EARLY HISTORICAL PROJECT EVIDENCE
PRE-1970:

1958 PROJECT MERCURY – USED ITERATIVE DEVELOPMENT TO SUCCESSFULLY BUILD THE SYSTEM
INCREMENTALLY.

1970S:

THIS PROJECT LAID THE FOUNDATION FOR THE IBM FEDERAL SYSTEMS DIVISION (FSD) WHICH BUILT
MANY AEROSPACE AND DEFENSE SYSTEMS THROUGHOUT THE 1970S INCLUDING:

THE US TRIDENT SUBMARINE (1972) WHICH USED 4 TIMEBOXED ITERATIONS OF 6 MONTHS IN
DURATION.

THE TRW/ARMY SITE DEFENSE SOFTWARE PROJECT FOR BALLISTIC MISSILE DEFENSE WHICH
DEVELOPED THE SYSTEM IN 5 ITERATIONS WITHOUT TIMEBOXING.

US NAVY HELICOPTER-SHIP SYSTEMS LAMPS THAT USED 45, 1-MONTH ITERATIONS TO SUCCESSFULLY
DEVELOP THE SYSTEM.

1977-1980 - PRIMARY AVIONICS SOFTWARE SYSTEM FOR THE SPACE SHUTTLE WAS BUILT IN 17
ITERATIONS OVER 31 MONTHS AVERAGING 8 MONTHS/ITERATION.

EVERYONE OF THESE SYSTEMS WERE DEVELOPED ON TIME AND UNDER BUDGET.

2. EARLY HISTORICAL PROJECT EVIDENCE
1980S:

1984-1988 – MAGNAVOX ELECTRONIC SYSTEMS ARTILLERY COMMAND AND CONTROL SYSTEM FOR
THE US ARMY WAS BUILT IN 5 ITERATIONS.

1983-1994 – US AIR TRAFFIC CONTROL (ATC) WAS RUN USING THE TRADITIONAL WATERFALL MODEL.
 IT FAILED DUE TO LACK OF STAKEHOLDER FEEDBACK, ANALYSIS PARALYSIS, COMPLEXITY
OVERLOAD, ETC. THIS PROJECT WAS RESTARTED USING ITERATIVE DEVELOPMENT AND SUCCEEDED.

1990S:

THE CANADIAN AIR TRAFFIC CONTROL (CAATS) PROJECT IS ANOTHER EXAMPLE OF A FAILED
PROGRAM THAT WAS RE-STARTED USING A UNIFIED PROCESS APPROACH WITH 6-MONTH
ITERATIONS, A STAFF OF SEVERAL HUNDRED DEVELOPERS, AND OVER 1-MILLION LINES OF CODE
(ADA). THE PROGRAM WAS SUCCESSFUL.

THE PROGRAM WAS DEVELOPED BY A TEAM OF ENGINEERS THAT ORIGINATED AT HUGHES AIRCRAFT
COMPANY, FULLERTON CA. AFTER WINNING THE CONTRACT THE TEAM WAS RE-LOCATED TO CANADA TO
FORM HUGHES CANADA.

THIS COMPANY WAS BOUGHT BY RAYTHEON AND TURNED INTO RAYTHEON CANADA.

3. STANDARDS-BODY EVIDENCE
TRANSITION OF US DOD STANDARDS FROM WATERFALL (1980) TO ITERATIVE AND
EVOLUTIONARY (TODAY)

1980 – DOD-STD-2167 REQUIRED SOFTWARE DEVELOPMENT TO USE A WATERFALL LIFE-CYCLE MODEL AND
FOLLOW A DOCUMENTATION DRIVEN APPROACH.

1988 – DOD-STD-2167A REVISED DOD-STD-2167 TO ENCOURAGE IID ALTERNATIVES TO THE WATERFALL
LIFE-CYCLE MODEL. HOWEVER, SINCE THE STANDARD STILL FOCUSED ON A DOCUMENT DRIVEN
APPROACH TO DEVELOPMENT, MANY CONTRACTS STILL INTERPRETED IT AS IMPLYING THEY SHOULD
CONTINUE USING THE WATERFALL LIFE-CYCLE MODEL.

1994 – MIL-STD-498 SUPERSEDED DOD-STD-2167A. THIS STANDARD PROMOTED AN EVOLUTIONARY
REQUIREMENTS AND DESIGN APPROACH FOR ALL INCREMENTAL ITERATIONS.

2002 THE US FOOD AND DRUG ADMINISTRATION (FDA) ALSO UPDATED THEIR STANDARDS TO ELIMINATE
THE REQUIREMENT OF FOLLOWING THE WATERFALL LIFE-CYCLE MODEL AND REPLACED IT WITH ITERATIVE
DEVELOPMENT.

ALTHOUGH MANY EUROPEAN STANDARDS STILL REQUIRE THE USE OF THE WATERFALL LIFE-CYCLE MODEL;
NATO MADE THE LEAP TO EVOLUTIONARY DEVELOPMENT IN 2002.

4. EXPERT AND THOUGHT LEADER EVIDENCE
THE AUTHOR IDENTIFIES EXPERTS IN THE FIELD IDD INCLUDING:

HARLAN MILLS – WHO WORKED AT IBM FSD IN 1970. MILLS WAS A MAJOR CONTRIBUTOR TO THE CONCEPT OF
STRUCTURED PROGRAMMING, TOP-DOWN DESIGN PROGRAMMING, AND INCREMENTAL DEVELOPMENT. MILLS
STATED THAT “SOFTWARE DEVELOPMENT SHOULD BE DONE INCREMENTALLY IN STAGES WITH CONTINUOUS USER
PARTICIPATION AND REPLANNING WITH DESIGN TO COST PROGRAMMING WITHIN EACH STAGE”.

TOM GILB – PROMOTED THE “EVO” ITERATIVE METHOD IN 1976. GILB FOCUS WAS TO BREAK COMPLEX SYSTEMS
DOWN INTO SMALL STEPS THAT HAD A CLEAR MEASURE OF SUCCESS. AN ADVANTAGE OF THIS APPROACH WAS
THAT IF A STEP FAILED, IT GAVE YOU AN OPPORTUNITY TO INCORPORATE FEEDBACK, ADAPT, AND CONTINUE WITH
THE SOFTWARE DEVELOPMENT.

FREDERICK BROOKS – RECOMMEND AN IID APPROACH TO SOFTWARE DEVELOPMENT OVER USE OF THE WATERFALL
METHOD IN 1987 STATING THAT UP-FRONT REQUIREMENT SPECIFICATIONS WERE TO BLAME FOR THE HIGH
PERCENTAGE OF PROGRAM FAILURES. BROOKS ALSO PUBLISHED THE BOOK TITLED – THE MYTHICAL MAN MONTH
IN 1985 THAT STATED, “ADDING MANPOWER TO A LATE SOFTWARE PROJECT MAKES IT LATER”.

BARRY BOEHM – PUBLISHED THE BOEHM’S SPIRAL MODEL THAT PROMOTED ITERATIVE DEVELOPMENT IN 1985.

JAMES MARTIN – PROMOTED TIMEBOXED ITERATIVE DEVELOPMENT WITH CUSTOMER PARTICIPATION IN THE 1980S.
MARTIN BELIEVED THAT RAPID APPLICATION DEVELOPMENT (RAD) WAS A METHOD TO UNDERSTAND LARGE
COMPLEX SYSTEMS. THIS METHOD FOCUSED ON CREATING A PRODUCTION-GRADE PROTOTYPE, LEARNING FROM
IT, AND EVOLVING IT UNTIL IT PRODUCED A PRODUCT THAT THE END USER WANTED.

TOM DEMARCO – IDENTIFIED IID METHODOLOGY AS A RISK MITIGATION TECHNIQUE IN 2003.

5. A BUSINESS CASE FOR ITERATIVE DEVELOPMENT

A BUSINESS CASE FOR ITERATIVE DEVELOPMENT
CAN BE MADE BASED ON SEVERAL FACTORS
INCLUDING:

• PRODUCTIVITY (INCREASES)

• QUALITY (PROCESS AND PRODUCT)

• LESS FAILURES, LESS COST/SCHEDULE IMPACT

• CUSTOMER SATISFACTION (END-PRODUCT
MEETS EXPECTATIONS)

BASED ON THE GRAPH TO THE LEFT, IF A COMPANY AVERAGED 10 PROJECTS A YEAR
AND EACH PROJECT COST $1M. THEN IN THE 2000 A COMPANY WOULD STAND TO
LOOSE 23% OR $2.3M FROM FAILED PROJECTS AND HAVE COST OVERRUNS IN 49% OF
THE OTHER PROJECTS.

BY ADOPTING IID METHODOLOGIES BOTH PROJECT FAILURE RATES AND CHALLENGED
RATES WOULD BE REDUCED, THEREBY INCREASING THE COMPANY'S PROFITABILITY.

6. THE HISTORICAL ACCIDENT OF WATERFALL VALIDITY

WINSTON ROYCE - PUBLISHED A PAPER IN 1970 TITLED
“MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS
(LSS)” THAT RECOMMEND TO DO THE WATERFALL PROCESS
TWICE. TO FIRST HAVE A THROW-AWAY PROTOTYPE EFFORT
PRIOR TO IMPLEMENTING THE PROJECT WHEN THERE ARE
UNKNOWN FACTORS.

DOD-STD-2167 WAS ADOPTED IN THE 1980S WHICH REQUIRED
THE USE OF THE WATERFALL MODEL COMBINED WITH
DOCUMENT-DRIVEN REVIEWS. MOST IMPLEMENTORS OF LSS
LOST SIGHT OF THE NEED TO PROTOTYPE WHEN UNKNOWN
FACTORS ARE INVOLVED.

MANY OTHER STANDARDS WERE BASED ON DOD-STD-2167

WATERFALL WAS SIMPLE: DO REQUIREMENTS, DESIGN, AND
IMPLEMENTATION.

WATERFALL GAVE THE ILLUSION OF AN ORDERLY, PREDICTABLE,
ACCOUNTABLE, AND MEASURABLE PROCESS WITH SIMPLE
DOCUMENT DRIVEN MILESTONES.

UP-FRONT SPECIFICATIONS WERE PROMOTED BY SYSTEM
ENGINEERING ORGANIZATIONS.

CMMI INFLUENCED ORGANIZATIONS TO FOLLOW A DOCUMENT
DRIVEN DEVELOPMENT WHICH WAS IN LINE WITH A WATER FALL
METHODOLOGY.

WordPress.com - Creative Commons

REFERENCES

AGILE & ITERATIVE DEVELOPMENT, A MANAGER’S GUIDE, CRAIG LARMAN, EIGHTH
EDITION, ADDISON WESLEY, NEW YORK, NY, COPYRIGHT 2004 BY PEARSON
EDUCATION , INC.

SPECIFIC SOURCES THE AUTHOR QUOTED:

[DECK94] – DECK, M. 1994. “CLEANROOM SOFTWARE ENGINEERING: QUALITY
IMPROVEMENT AND COST REDUCTION.” PROCEEDINGS, 12TH PACIFIC NORTHWEST
SOFTWARE QUALITY CONFERENCE.

[JARZOMBEK99] – JARZOMBEK, J 1999. THE 5TH ANNUAL JAWS S3 PROCEEDINGS.

[JOHNSON02] - JOHNSON, J. 2002. KEYNOTE SPEECH, XP 2002, SARDINIA, ITALY

[JONES00] – JONES, C. 2000. SOFTWARE ASSESSMENTS, BENCHMARKS, AND BEST
PRACTICES. ADDISION-WESLEY.

[JONES95] –JONES, C. 1995. PATTERNS OF SOFTWARE FAILURE AND SUCCESS.
INTERNATIONAL THOMPSON PRESS.

[JONES97] - JONES, C. 1997. APPLIED SOFTWARE MEASUREMENTS. MCGRAW HILL.

REFERENCES
SPECIFIC SOURCES THE AUTHOR QUOTED:

[MACCORMACK01] – MAC CORMACK, A. 2001. PRODUCT-DEVELOPMENT PRACTICES THAT
WORK.” MIT SLOAN MANAGEMENT REVIEW. 42(2)

[MANZO02] – MANZO, H, 2002. “ODYSSEY AND OTHER CODE SCIENCE SUCCESS STORIES.”
CROSSTALK: THE JOURNAL OF DEFENSE SOFTWARE ENGINEERING, OCT. 2002, USA DOD.

[MARTIN91] – MARTIN, J. 1991. RAPID APPLICATION DEVELOPMENT. MACMILLAIN

[MKCC03]- MAC CORMACK, A. KEMERER, C., CUSUMANO, M., AND CRANDALL, B. 2003.
“EXPLORING TRADE-OFFS BETWEEN PRODUCTIVITY & QUALITY IN SELECTION OF
SOFTWARE DEVELOPMENT PRACTICES.” WORKING DRAFT SUBMITTED TO IEEE SOFTWARE.

[MV101] – MAC CORMACK. A., VERGANTI, R., AND IANSITI, M. 2001. “DEVELOPING
PRODUCTS ON INTERNET TIME: THE ANATOMY OF A FLEXIBLE DEVELOPMENT PROCESS.”
MANAGEMENT SCIENCE. JAN 2001.

[STANDISH 98] - JIM JOHNSON, ET. AL 1998. CHAOS: A RECIPE FOR SUCCESS, 1998.
PUBLISHED REPORT. THE STANDISH GROUP

[THOMAS01] - THOMAS, M. 2001. “IT PROJECTS SINK OR SWIM” BRITISH COMPUTER
SOCIETY REVIEW.

	Slide 1
	EVIDENCE
	1. Research EVIDENCE
	1. Research EVIDENCE
	Slide 5
	1. Research EVIDENCE – size research
	1. Research EVIDENCE – Change research
	1. Research EVIDENCE – Change Research
	1. Research EVIDENCE – waterfall failure Research
	1. Research EVIDENCE – productivity Research
	1. Research EVIDENCE – Quality & Defect Research
	2. Early historical project evidence
	2. Early historical project evidence
	3. Standards-Body Evidence
	4. Expert and Thought Leader Evidence
	5. A Business Case for iterative development
	6. The historical accident of waterfall validity
	References
	References

