
Best-First Search

1

• Idea: select the path whose end is closest to a 
goal according to the heuristic function.

• Best-First search selects a path on the frontier 
with minimal h-value (for the end node).

• Necessary data structures
Open (to be visited) queue as a priority queue (max or min heap) and 
Closed queue (already visited) are maintained and avoid duplicate states.
Optionally SL (to maintain the current path) for the shortest path



Best-First Search Algorithm

l Algorithm sketch for Best-First Search
1. Check if the current state is a solution, if so return it else go to next step.
2. Expand the current state of the search.
3. Evaluate its children states.
4. Select the most promising state (from all states seen) in Open priority 

queue.
5. If a path to the current state is NOT shortest, backtrack to a previous state.

l By simply selecting the next best state from Open priority queue

l Continue steps 1 – 5 until it finds a solution.

l Comment on Best-First Search
l works like a generic least cost search taking only good strategies used in 

DFS, BFS, Hill climbing, Backtracking algorithm that utilizes heuristics.
l What’s the main difference between Backtracking and Best-First 

Search?
2



3

Best-First Search of a Hypothetical State 
Space

Letters represent states

Numbers represent heuristic values 
as cost, e.g., the smaller the better 
in this example.

Bold states indicate the states 
expanded by the heuristic algorithm

Assume P is the goal

Compare this search with hill-climbing and backtracking



4

*Maintain a priority queue by heuristic value

How can we implement a priority queue?

A Trace of the Execution of Best-
First Search

How can we maintain the shortest path?



5

Best-First Search Algorithm

If path is important, we 
have to maintain the 
shortest path.
See the backtracking 
algorithm that maintains the 
current path. 



6

Heuristic f(n) Applied to States in the 8-
puzzle for Best-First Search

f(n) is a cost function, the smaller the better.



7

Open and Closed as they Appear after 
the 3rd Iteration of Best-first Search



8

State Space Generated during Best-first Search

What if h(n) is not a 
reasonable measure?



9

Admissibility and Optimal Solution

Q1: Does this 
mean h*() has to 
be perfect?
Q2: Are those 
heuristic 
functions h1, h2, 
and h3
admissible?
Q3: Is BFS A*?

Admissible heuristic f(n) = 
g(n) + h*(n) where h*(n)
never overestimates the 
actual cost to reach the goal 
AND h(n)>=0 AND h(goal)=0.

h2: Manhattan distance



A* Search Algorithm

10

• A* is a mix of:
• lowest-cost-first and 
• best-first search

• A* treats the frontier as a priority queue ordered 
by f(p)= cost(p) + h(p)

• It always selects the node on the frontier with 
lowest estimated total distance.



Comparison of State Space Searched 
using Breadth-First Search and A* Search

11

The optimal search 
selection is in bold. 
Heuristic used is f(n) = 
g(n) + h(n) where h(n) is 
tiles out of place.

Is BFS admissible? 

Is DFS admissible?

Is Hill-climbing 
admissible?

Is SA admissible?

Note: Admissibility 
doesn’t require efficiency 
of a search method.



Example: cities

12

An example of an A* algorithm 
in action where nodes are cities 
connected with roads and h(x) 
is the straight-line distance to 
target point

By CountingPine - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=31958129



Example: robot motion planning

13

By Subh83 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=14916867

Illustration of A* search for finding path 
from a start node to a goal node in 
a robot motion planning problem. The 
empty circles represent the nodes in 
the open set, i.e., those that remain to be 
explored, and the filled ones are in the 
closed set. Color on each closed node 
indicates the distance from the start: the 
greener, the farther. One can first see the 
A* moving in a straight line in the direction 
of the goal, then when hitting the obstacle, 
it explores alternative routes through the 
nodes from the open set.



Example: path between Washington, 
D.C. and Los Angeles

14

By Srossd - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=35900474

The A* algorithm also has 
real-world applications. In 
this example, edges are 
railroads and h(x) is the 
great-circle distance (the 
shortest possible 
distance on a sphere) to 
the target. The algorithm is 
searching for a path 
between Washington, D.C. 
and Los Angeles.



Dijkstra’s algorithm is a special 
case of A*

15

By Ibmua - Work by uploader., Public Domain, https://commons.wikimedia.org/w/index.php?curid=6282617

Dijkstra's algorithm, is also 
called A1 algorithm, to find the 
shortest path between a and b. 
It picks the unvisited vertex with 
the lowest distance, calculates 
the distance through it to each 
unvisited neighbor, and updates 
the neighbor's distance if 
smaller. Mark visited (set to red) 
when done with neighbors.

h(n) = 0



16

Local Admissibility of Heuristics

(Consistency)

Monotonicity requires local admissibility of h*() between states ni to nj, not only h*(n).
*Admissible heuristic function: f*(n) = g*(n) + h*(n) where g*(n) is the cost of the shortest path 
from the start to n AND h*(n) returns the actual cost of the shortest path from n to the goal 
(never overestimate the actual path) AND h(n) >=0 AND h(goal)=0). 
f*(n) is monotonically NON-decreasing and the actual cost of the optimal path from start to goal.

Question: Is there heuristics that are locally admissible or consistently find 
the minimal path to each state they encounter in the search (monotonicity)?



17

Use of Information in Heuristic Search

*In general the more informed heuristic is better in decision making.

*But we should consider the computational cost to use the more 
information, e.g., playing a chess in limited time and resources.

*Using too much of information may not help any longer at certain point.



Informal plot of cost of searching and cost of computing heuristic 
evaluation against informedness of heuristic, (from Nilsson,1980) 18

Computational Cost vs. Informedness



How to Evaluate the Behavior of 
Heuristic Search
l Criteria for good heuristic search

l Completeness 
l Is the algorithm guaranteed to find a solution when there is one?

l Optimality
l Does the strategy find the optimal solution?

l Time complexity
l How long does it take to find a solution?

l Space complexity
l How much memory is needed to perform the search?

l But all heuristics are fallible since heuristic is an informed 
guess for the next step to be taken in solving a problem.
l Heuristics are still critical in problem solving since 

l Many problems do not have exact solutions, e.g., medical diagnosis. 
l Problems may have an exact solution but the computational cost of finding 

it may be prohibitive. 19



l To better understand heuristic search, try to solve 
more example problems using Hill-climbing and A* 
algorithm
l Auto pilot
l Autonomous drone
l Robot vacuum
l Chess
l Decision making for investment in financial markets
l Etc.

l Can we solve all types of problems using A*?

20



Beyond the Types of Heuristic Search 
Methods We Have Discussed So Far

l How expensive backtracking is in problem solving?
l Can we use backtracking strategy for all types of problems?
l Can a heuristic function be learned from experience (adaptation) and 

executed during runtime?
l Searching under observable or partially observable environments?

l State space search is deterministic.
l How about searching under unknown environments?

l Offline search computes a complete solution before action but online 
search interleaves computation and action, e.g., first take an action then 
observes the environment and compute the next action, etc. 

l How happens if multi-agents (instead of single-agent) are involved in 
searching for solution through cooperation?

l How can we solve problems involving game or competition?
l We will talk about this type of problems next. 21



References

l George Fluger, Artificial Intelligence: Structures and Strategies for 
Complex Problem Solving, 6th edition, Chapter 4, Addison Wesley, 
2009.

l Russel and Norvig, Artificial Intelligence: A Modern Approach, 3rd

edition, Prentice Hall, 2010.

22


