CPSC 362 Lecture - poot

Chris Nutter*

September 16, 2020

Timestamps

07:38:48 PM

Okay so he’s talking mainly about the project and how far along peo-
ple are. People tend to not be incredibly far only a handful of people
have created an FSM. He said he is considering adjusting the project
depending on our position and understanding of the project.

07:48:16 PM
Now he is going back to talking about how to implement a DFSM into
code. He’s sorta doing psuedo-code mentioned below. Figure 4

08:06:36 PM
Taking a break then going to go over non-deterministic FSM (and
NFAs).

08:13:54 PM
You can get 90% on the project if you document a FSM and diagram
it without code. FYI. Basically 90% for desired output, 100% for in-
tended FSM.

08:48:38 PM
Basically he’s been making corrolations between video game idles and
NFSM. He also mentioned that this will be useful for regexp next week.

09:11:51 PM
Next time, we are converting NFSM to DFSM. So make sure to un-
derstand FSM. lol

*Dedicated to @QQuesoGrande

Contents

[T FSM Recap|

2 Chapter 2.2 - Deterministic FSM]|

[3 Chapter 2.3 - Non-Deterministic FSM (NFSM)|

1 FSM Recap

A finite-state machine (FSM) or finite-state automaton (FSA, plural: au-
tomata), finite automaton, or simply a state machine, is a mathematical
model of computation. It is an abstract machine that can be in exactly one
of a finite number of states at any given time. The FSM can change from
one state to another in response to some inputs; the change from one state
to another is called a transition.

An FSM is defined by a list of its states, its initial state, and the inputs that
trigger each transition. Finite-state machines are of two types—deterministic
finite-state machines and non-deterministic finite-state machines.

A deterministic finite-state machine can be constructed equivalent to any
non-deterministic one.

WZ CCCc AR

DDA EAD2H DK Dt

CSA e £5m ucepf)

,L(zpju,\mﬂ‘
EXTH Graphical
%= {ab,c} 6epresentation?
Q={1234) 5
o1
F={34}
N:
a b c
<1]| 2 1 3
a2 (- N
@) 3 a2
s
G 1 i 2‘ f@ ‘/4/‘1_1

2 Chapter 2.2 - Deterministic FSM

Ex. Given the following FSM

c) Implementation of a DFSM

function DFSM (w : string)
table = array [1..nstates, 1..nalphabets] of integer; /* Table N
\ wl., “zxt.—s forthe transitions*/
pat {

state = 1; (the starting state)
for i = to length (0) do

{
==(col = char_to_col (e[i]);
itate = table[state, col];

-~ Yy
(L if stateis in F then return 1 /* accept */
At else return 0

}

AR TILIE RS

= {Z\ < lj‘)'\t\7 ® @ @ .
Ja
t- 97,4 (Nl N
o= aca ¢ \<\7 N v \b \ Sl
a C
N CaIIQESM(d¢a> n o ——
State =1, % g ﬁ ;
fori=1to 3 do=> 2 |1 3 2

i=1, cal=1, state = ntable (1,.1)
\¢) =2, col=3, state = ntable (2,3
i=38, col=1, state = ntable (1,1

)
)
State 2 is not in F = {3,4}

=> return O(false)
=> This string is NOT accepted

3 Chapter 2.3 - Non-Deterministic FSM (NFSM)

Def: NFSM= (Z, Q, q0, F, N)
Where X = a finite set of input symbols
Q = a finite se¥of states
do < I8 the starting state
F < Q is a set of accepting state 1
N:Qx (£Ue) ->P(Q) enpsed= |]

Two differences from DFSM
) Input is expanded by epsilon => can go to a different state
without reading any input

@an go to multiple states given an input

Ex 1. NFSM with Multiple States Transitions

M= (£={ab},Q=1{1.2,3}, qp-4 F=1{2,3}
N:

;| a b
{1.2v {1}
{2} {1,3}

{23 {1,8}

~7
2
3

EX2) NSFM with Epsilon tran

a b g
1 |{1,2} {3} {}
2 | {3} {2,3} {4}
3| {3,4} {2} {1,4}
4| {1} {2} {1}

@ OO

EX2) NSFM with Epsilon transitions

lr
gy >t

a b £
qo=1 |{1,2} {3} {}
2| {38} {23} {4}
3|{34 {2} {14/ w=sb
. L

	FSM Recap
	Chapter 2.2 - Deterministic FSM
	Chapter 2.3 - Non-Deterministic FSM (NFSM)

