

CPSC-440 Computer System Architecture

Lecture 2 Performance Assessment

Performance

- What we care most about…
	- How fast the computer can run a program
	- Response time or throughput
		- Response time: time to finish one single program
		- Throughput: total amount of work done in unit time

CPU Performance Equation

• CPU Time

 $CPU Time = -$ Clock cycles for a program (cycles) Clock Freq (cycles/sec)

- If we know...
	- Total Instruction Counts (I_c)
	- Cycles Per Instruction (CPI)
	- Clock Frequency (f)
	- Cycle Time (τ) the inverse of the clock frequency $(1/f)$
	- CPU Time (T) :

$$
T = \frac{I_c \times CPI}{f} = I_c \times CPI \times \tau
$$

What if different instructions have different CPIs?

• CPU Time

$$
T = \left(\sum_{i=1}^{n} (I_i \times CPI_i)\right) \times \tau
$$

• Where i is the instruction type

• CPI

$$
CPI = \frac{\sum_{i=1}^{n} (I_i \times CPI_i)}{I_c}
$$

- IPC (Instructions Per Cycle)
	- Inverse of CPI

MIPS and MFLOPS Rates

• MIPS (Millions of Instructions Per Second) Rate

$$
MIPS Rate = \frac{I_C}{T \times 10^6} = \frac{f}{CPI \times 10^6}
$$

• MFLOPS (Millions of Floating Point Operations Per Second) Rate

MFLOPS Rate

of executed floating point operations in a program

Execution time \times 10⁶

=

Example

- 2 million instructions on a 400 MHz processor
- 4 major types of instructions
- What's the MIPS rate? $CPI = 0.6 + (2 \times 0.18) + (4 \times 0.12) + (8 \times 0.1) = 2.24$ $MIPS Rate = (400 \times 10^6)/(2.24 \times 10^6) \approx 178$

Improve CPU time

- Instruction count
	- ISA and compiler technology
- CPI
	- Organization and ISA
- Clock cycle time
	- Hardware technology and organization

Benchmarks

- MIPS and MFLOPS rates are inadequate to evaluate performance of processors
	- Because of differences in instruction sets, these rates are not valid means of comparing the performance of different architectures

Example

$A = B + C$

Assume all quantities in main memory

- Can be compiled into one instruction
- Rated at 1 MIPS
- add mem (B) , mem (C) , mem (A)

Reduced Instruction Set Computer (RISC)

• Rated at 4 MIPS

load mem (B) , reg (1) load mem (C) , reg (2) add reg(1), $reg(2)$, reg(3) store $reg(3)$, mem (A)

Standard Performance Evaluation Corporation (SPEC) Benchmark

- Benchmark Suite
	- Collection of programs
	- Provides a representative test of a computer in a particular application or area

Performance Comparison

Which One is Faster?

A is 10x faster than B for Prog P1

B is 10x faster than A for Prog P2

A is 20x faster than C for Prog P1

C is 50x faster than A for Prog P2

B is 2x faster than C for Prog P1

C is 5x faster than B for Prog P2

Total Execution Rates

- Both program A and B have equal number of instructions
- Below shows the execution rates

Average Execution Rate

- What if Program A and B have a different number of instructions?
- If there are m different benchmark programs

$$
R_A = \frac{1}{m} \sum_{i=1}^{m} R_i
$$

- Where R_i is the high-level language instruction execution rate for the i^{th} benchmark program
- The throughput of a machine carrying out a number of tasks
	- The higher the rate (R_A) the better

Harmonic Mean

• Alternative to average execution rate

$$
R_H = \frac{m}{\sum_{i=1}^m \frac{1}{R_i}}
$$

- The reciprocal of the arithmetic mean of the reciprocals
- Gives the inverse of the average execution rate
- Again, the higher the rate (R_H) the better

Total Execution Time Example

The top table shows the execution rates. Assume each program has equal weight.

SPEC Benchmark Speed Metrics

• Measures the ability of a computer to complete a single task

$$
r_i = \frac{Tref_i}{T s u t_i}
$$

- *Tref_i* execution time of benchmark program *i* on the reference system
- $T_{S}ut_i$ execution time of benchmark program i on the system under test
- The larger the ratio, the higher the speed

SPEC Benchmark Speed Metrics

- Example
	- A system executes a program in 934 sec.
	- The reference implementation requires 22,135 sec.

$$
\frac{22,135 \, sec}{934 \, sec} = 23.7
$$

SPEC Benchmark Rate Metric

- Throughput/rate of a machine carrying out a number of tasks
- Multiple copies of benchmarks run simultaneously

$$
r_i = \frac{N \times Tref_i}{T_{\text{S}}}
$$

• N – number of copies of the program that are run simultaneously

SPEC Benchmark

Geometric Mean

- Averages ratios for all 12 integer benchmarks
- Used to determine the overall performance measure

$$
r_G = \left(\prod_{i=1}^n r_i\right)^{1/n}
$$

 $(17.5 \times 14 \times 13.7 \times 17.6 \times 14.7 \times 18.6 \times 17 \times 31.3 \times 23.7 \times 9.23 \times 10.9 \times 14.7)^{1/12} = 18.5$

Amdahl's Law

• *Speedup in one aspect of technology/design does not result in a corresponding improvement in performance*

= Execution time bef ore enh Execution time af ter enh

Amdahl's Law Example

Single vs. Multiple processors

$$
Speedup = \frac{X}{Y} = \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}
$$
\n6. Y: Time to average pressure, an single pressure

- X : Time to execute a program on a single processor
- $Y:$ Time to execute a program on N parallel processors
- $T:$ Total execution time
- f : Fraction of code executed on parallel processors (no scheduling overhead)
- $(1 f)$: Fraction of code executed on a single processor
- 1. When f is small, the use of parallel processors has little effect
- 2. As $N \to \infty$, speedup bound by $1/(1-f)$
	- Diminishing returns for using more processors

Amdahl's Law Example

