
PRESENTATION TITLE
CPSC-440 Computer System Architecture

MATLAB Review

Matlab

• Is a numerical computing environment and 4th

generation programming language
• Developed by MathWorks, MATLAB allows

matrix manipulations, plotting of functions
and data, implementation of algorithms,
creation of user interfaces, and interfacing
with programs written in other languages,
including C, C++, Java, and Fortran

Free Matlab for Students

• Available at CSUF IT website:
– http://www.fullerton.edu/it/students/software/m

atlab/

http://www.fullerton.edu/it/students/software/matlab/

Matlab Default View

Command Window

Workspace Window

• Shows the variables
currently available to
you

Command History Window

• Shows the commands
you have entered

• Sorted by date

Current Folder Window

• Shows the folders for
the present working
directory

Present Working Directory

• Shows the current
folder you are working
in

• You can also use the
command “pwd”

Help Docs

• Searchable help doc
• You can also use the

“help” command
• Example:

help plot

Help Doc

Creating Scripts

Launches the script editor

Script Editor

• Instead of entering in
the command window
directly, you can also
enter commands in the
script editor and save as
a m-file

Script Editor

Executes entire script

Script Editor

Or you can select a portion
of the script and execute it only
by pressing F9

Getting Started
>> a = [1 2; 2 1]

a =
1 2
2 1

>> a*a

ans =

5 4
4 5

• Example
– Define a matrix “a” and

computed its square
– “a times a”

• Text in bold is what you
type in the command
window

• Ordinary text is what
Matlab outputs

Matrices
• To enter the matrix:

1 2
3 4

• and store it in a variable “a”, do this:
>> a = [1 2; 3 4];

• To redisplay the matrix, just type its name:
>> a

• Once you know how to enter and display matrices, it is
easy to compute with them. First we will square the
matrix “a”:

>> a * a

Matrices

• Now we'll try something a little harder. First
we define a matrix b:

>> b = [1 2; 0 1];
• Then we compute the product ab:

>> a*b
• Finally, we compute the product in the other

order:
>> b*a

Matrices

• Notice that the two products are different
– Matrix multiplication is non-commmutative

• Of course, we can also add matrices:
>> a + b

• Now let's store the result of this addition so
that we can use it later:

>> s = a + b

Matrices
• Matrices can sometimes be inverted:

>> inv(s)
• To check that this is correct, we compute the product of s

and its inverse:
>> s * inv(s)

• The result is the unit, or identity matrix. We can also write
the computation as

>> s/s
• We can also write

>> s\s
• which is the same as

>> inv(s) * s

Matrices
• To see that these operations, left and right division, are

really different, we do the following:
>> a/b
>> a\b

• Not all matrices can be inverted, or used as the
denominator in matrix division:

>> c = [1 1; 1 1];
>> inv(c);

• A matrix can be inverted if and only if its determinant is
nonzero:

>> det(a)
>> det(c)

Systems of Equations
• Now consider a linear equation

ax + by = p
cx + dy = q

• We can write this more compactly as
AX = B

• where the coefficient matrix A is
a b
c d

• the vector of unknowns is
x
y

• and the vector on the right-hand side is
p
q

• If A is invertible, X = (1/A)B, or, using Matlab notation, X = A\B. Let’s try this out by solving ax = b
with a as before and b = [1; 0]. Note that b is a column vector.

>> b = [1; 0]
>> a\b

Loops
• Loop Example

– We regard x as representing (for example) the population state of an island
– The first entry (1) gives the fraction of the population in the west half of the

island, the second entry (0) give the fraction in the east half
– The state of the population T units of time later is given by the rule y = ax
– This expresses the fact that an individual in the west half stays put with

probability 0.8 and moves east with probability 0.2 (note 0.8 + 0.2 = 1), and
the fact that in individual in the east stays put with probability 0.9 and moves
west with probability 0.1

– Thus, successive population states can be predicted/computed by repeated
matrix multiplication

>> a = [0.8 0.1; 0.2 0.9]
>> x = [1; 0]
>> for i = 1:20, x = a*x, end

Graphing

Functions of One Variable
• To make a graph of y = sin(t) on the

interval t = 0 to t = 10 we do the
following:

>> t = 0:.3:10;
>> y = sin(t);
>> plot(t,y)

• The command t = 0:.3:10; defines a
vector with components ranging
from 0 to 10 in steps of 0.3

• The y = sin(t); defines a vector
whose components are sin(0),
sin(0.3), sin(0.6), etc.

• Finally, plot(t,y) use the vector of t
and y values to construct the graph

Graphing

Functions of Two Variable
• Here is how we graph the function

𝑧𝑧 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥𝑒𝑒(−𝑥𝑥2−𝑦𝑦2)

>> [x,y] = meshgrid(-2:.2:2, -2:.2:2);
>> z = x .* exp(-x.^2 - y.^2);
>> surf(x,y,z)

• The first command creates a matrix
whose entries are the points of a grid in
the square -2 <= x <= 2, -2 <= y <= 2

• The small squares which make up the
grid are 0.2 units wide and 0.2 unit tall

• The second command creates a matrix
whose entries are the values of the
function z(x,y) at the grid points

• The third command uses this
information to construct the graph

Common Commands and Operators

• http://www.hkn.umn.edu/resources/files/mat
lab/MatlabCommands.pdf

http://www.hkn.umn.edu/resources/files/matlab/MatlabCommands.pdf

Useful Tutorials

• Download MATLAB and do the following
tutorials:
– Basic Matric Operations
– Getting Started with MATLAB
– Matlab Overview Video
– Analyzing and Visualizing Data with MATLAB
– Programming and Developing Algorithms with MATLAB
– Signal Related Videos

http://www.mathworks.com/help/matlab/examples/basic-matrix-operations.html?prodcode=ML
http://www.mathworks.com/help/matlab/getting-started-with-matlab.html
http://www.mathworks.com/videos/matlab-overview-61923.html
http://www.mathworks.com/videos/analyzing-and-visualizing-data-with-matlab-70942.html
http://www.mathworks.com/videos/programming-and-developing-algorithms-with-matlab-71067.html
http://www.mathworks.com/solutions/mixed-signal-systems/devices.html

CPSC-440 Computer System Architecture

Lecture 1
Introduction

Introduction

Computer Architecture
Computer Organization

• The operational
units and their
interconnections
that realize the
architectural
specifications

•Hardware details
transparent to the
programmer, control
signals, interfaces
between the computer
and peripherals, memory
technology used

•Instruction set, number
of bits used to represent
various data types, I/O
mechanisms, techniques
for addressing memory

• Attributes of a
system visible to the
programmer

• Have a direct impact
on the logical
execution of a
program

Computer
Architecture

Architectural
attributes
include:

Computer
Organization

Organizational
attributes
include:

Structure and Function
• Hierarchical system

• Set of interrelated
subsystems

• Hierarchical nature of
complex systems is essential
to both their design and
their description

• Designer needs to only deal
with a particular level of the
system at a time
• Concerned with structure and

function at each level

• Structure
• The way in which

components relate to each
other

• Function
• The operation of individual

components as part of the
structure

+
Function
• A computer can perform

four basic functions:
• Data processing
• Data storage
• Data movement
• Control

+
Operations

(a)
Data Movement

+

+
Operations

(b)
Data Storage

+

+
Operations

(C)
Data Processing

+

+
Operations

(D)
Data Processing

+

The Computer

Structure

+
There are four main
structural
components
of the computer:

• CPU
• Controls the operation of the

computer and performs its
data processing functions

• Main Memory
• Stores data

• I/O
• Moves data between the

computer and its external
environment

• System Interconnection
• Some mechanism that

provides for communication
among CPU, main memory,
and I/O

+
CPU

Major structural
components:

• Control Unit
• Controls the operation of the

CPU and hence the computer
• Arithmetic and Logic Unit

(ALU)
• Performs the computer’s data

processing function
• Registers
• Provide storage internal to the

CPU
• CPU Interconnection
• Some mechanism that

provides for communication
among the control unit, ALU,
and registers

Questions
1. What, in general terms, is the distinction between computer organization

and computer architecture?

2. What, in general terms, is the distinction between computer structure and
computer function?

3. What are the four main functions of a computer?

4. List and briefly define the main structural components of a computer.

5. List and briefly define the main structural components of a processor.

HW 1

• Problems 1 to 5
• HW template with problems will be available

on Canvas

CPSC-440 Computer System Architecture

Lecture 2
Performance Assessment

Performance

• What we care most about…
• How fast the computer can run a program
• Response time or throughput

• Response time: time to finish one single program
• Throughput: total amount of work done in unit time

CPU Performance Equation

• CPU Time
𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑇𝑇𝑐𝑐 𝑓𝑓𝑙𝑙𝑓𝑓 𝑎𝑎 𝑝𝑝𝑓𝑓𝑙𝑙𝑝𝑝𝑓𝑓𝑎𝑎𝑇𝑇 (𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑇𝑇𝑐𝑐)
𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐹𝐹𝑓𝑓𝑇𝑇𝐹𝐹 (𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑇𝑇𝑐𝑐/𝑐𝑐𝑇𝑇𝑙𝑙)

• If we know…
• Total Instruction Counts (𝐼𝐼𝑐𝑐)
• Cycles Per Instruction (CPI)
• Clock Frequency (𝑓𝑓)
• Cycle Time (𝜏𝜏) - the inverse of the clock frequency (⁄1 𝑓𝑓)
• CPU Time (𝑇𝑇):

𝑇𝑇 =
𝐼𝐼𝑐𝑐 × 𝐶𝐶𝐶𝐶𝐼𝐼

𝑓𝑓
= 𝐼𝐼𝑐𝑐 × 𝐶𝐶𝐶𝐶𝐼𝐼 × 𝜏𝜏

What if different instructions have
different CPIs?

• CPU Time

𝑇𝑇 = �
𝑖𝑖=1

𝑛𝑛

(𝐼𝐼𝑖𝑖× 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖) × 𝜏𝜏

• Where 𝑇𝑇 is the instruction type
• CPI

𝐶𝐶𝐶𝐶𝐼𝐼 =
∑𝑖𝑖=1𝑛𝑛 (𝐼𝐼𝑖𝑖× 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖)

𝐼𝐼𝑐𝑐
• IPC (Instructions Per Cycle)

• Inverse of CPI

MIPS and MFLOPS Rates

• MIPS (Millions of Instructions Per Second)
Rate

𝑀𝑀𝐼𝐼𝐶𝐶𝑀𝑀 𝑅𝑅𝑎𝑎𝑅𝑅𝑇𝑇 =
𝐼𝐼𝐶𝐶

𝑇𝑇 × 106
=

𝑓𝑓
𝐶𝐶𝐶𝐶𝐼𝐼 × 106

• MFLOPS (Millions of Floating Point Operations
Per Second) Rate
𝑀𝑀𝐹𝐹𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 𝑅𝑅𝑎𝑎𝑅𝑅𝑇𝑇

=
𝑙𝑙𝑓𝑓 𝑇𝑇𝑒𝑒𝑇𝑇𝑙𝑙𝑒𝑒𝑅𝑅𝑇𝑇𝑒𝑒 𝑓𝑓𝑙𝑙𝑙𝑙𝑎𝑎𝑅𝑅𝑇𝑇𝑓𝑓𝑝𝑝 𝑝𝑝𝑙𝑙𝑇𝑇𝑓𝑓𝑅𝑅 𝑙𝑙𝑝𝑝𝑇𝑇𝑓𝑓𝑎𝑎𝑅𝑅𝑇𝑇𝑙𝑙𝑓𝑓𝑐𝑐 𝑇𝑇𝑓𝑓 𝑎𝑎 𝑝𝑝𝑓𝑓𝑙𝑙𝑝𝑝𝑓𝑓𝑎𝑎𝑇𝑇

𝐸𝐸𝑒𝑒𝑇𝑇𝑙𝑙𝑒𝑒𝑅𝑅𝑇𝑇𝑙𝑙𝑓𝑓 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 × 106

Example
• 2 million instructions on a 400 MHz processor
• 4 major types of instructions
• What’s the MIPS rate?
𝐶𝐶𝐶𝐶𝐼𝐼 = 0.6 + 2 × 0.18 + 4 × 0.12 + 8 × 0.1 = 2.24

𝑀𝑀𝐼𝐼𝐶𝐶𝑀𝑀 𝑅𝑅𝑎𝑎𝑅𝑅𝑇𝑇 = ⁄400 × 106 2.24 × 106 ≈ 178

Instruction Type 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 𝐼𝐼𝑖𝑖 (%)

Arithmetic and Logic 1 60

Load/Store with Cache Hit 2 18

Branch 4 12

Memory Reference with Cache Miss 8 10

Improve CPU time

• Instruction count
• ISA and compiler technology

• CPI
• Organization and ISA

• Clock cycle time
• Hardware technology and organization

Benchmarks

• MIPS and MFLOPS rates are inadequate to
evaluate performance of processors
• Because of differences in instruction sets, these

rates are not valid means of comparing the
performance of different architectures

Example

• Can be compiled into one
instruction

• Rated at 1 MIPS
add mem(B), mem(C), mem(A)

Reduced Instruction Set
Computer (RISC)

• Rated at 4 MIPS
load mem(B), reg(1)
load mem(C), reg(2)
add reg(1), reg(2), reg(3)
store reg(3), mem(A)

𝐴𝐴 = 𝐵𝐵 + 𝐶𝐶
Assume all quantities in main memory

Standard Performance Evaluation Corporation (SPEC)
Benchmark

• Benchmark Suite
• Collection of programs
• Provides a representative test of a computer in a

particular application or area

Performance Comparison

Which One is Faster?
A is 10x faster than B for Prog P1

B is 10x faster than A for Prog P2

A is 20x faster than C for Prog P1

C is 50x faster than A for Prog P2

B is 2x faster than C for Prog P1

C is 5x faster than B for Prog P2

Total Execution Rates

• Both program A and B have equal number of instructions
• Below shows the execution rates

Computer 1 Computer 2 Computer 3

Program A 1 10 20

Program B 1000 100 20

Total 1001 110 40

Average Execution Rate

• What if Program A and B have a different number
of instructions?

• If there are 𝑇𝑇 different benchmark programs

𝑅𝑅𝐴𝐴 =
1
𝑇𝑇�

𝑖𝑖=1

𝑚𝑚

𝑅𝑅𝑖𝑖

• Where 𝑅𝑅𝑖𝑖 is the high-level language instruction
execution rate for the 𝑇𝑇𝑡𝑡𝑡 benchmark program

• The throughput of a machine carrying out a
number of tasks
• The higher the rate (𝑅𝑅𝐴𝐴) the better

Harmonic Mean

• Alternative to average execution rate

𝑅𝑅𝐻𝐻 =
𝑇𝑇

∑𝑖𝑖=1𝑚𝑚 1
𝑅𝑅𝑖𝑖

• The reciprocal of the arithmetic mean of the
reciprocals

• Gives the inverse of the average execution
rate

• Again, the higher the rate (𝑅𝑅𝐻𝐻) the better

Total Execution Time Example

𝑅𝑅𝐴𝐴 Rank 𝑅𝑅𝐻𝐻 Rank

Computer A 25.325 1 0.25 2

Computer B 2.8 3 0.21 3

Computer C 3.25 2 2.1 1

Computer A Computer B Computer C

Program 1 100 10 5

Program 2 0.1 1 5

Program 3 0.2 0.1 2

Program 4 1 0.125 1

The top table shows the execution rates. Assume each program has equal weight.

SPEC Benchmark
Speed Metrics

• Measures the ability of a computer to
complete a single task

𝑓𝑓𝑖𝑖 =
𝑇𝑇𝑓𝑓𝑇𝑇𝑓𝑓𝑖𝑖
𝑇𝑇𝑐𝑐𝑒𝑒𝑅𝑅𝑖𝑖

• 𝑇𝑇𝑓𝑓𝑇𝑇𝑓𝑓𝑖𝑖 - execution time of benchmark program i on
the reference system

• 𝑇𝑇𝑐𝑐𝑒𝑒𝑅𝑅𝑖𝑖 - execution time of benchmark program i on
the system under test

• The larger the ratio, the higher the speed

SPEC Benchmark
Speed Metrics

• Example
• A system executes a program in 934 sec.
• The reference implementation requires

22,135 sec.
22,135 𝑐𝑐𝑇𝑇𝑙𝑙

934 𝑐𝑐𝑇𝑇𝑙𝑙
= 23.7

SPEC Benchmark
Rate Metric

• Throughput/rate of a machine carrying out a
number of tasks

• Multiple copies of benchmarks run
simultaneously

𝑓𝑓𝑖𝑖 =
𝑁𝑁 × 𝑇𝑇𝑓𝑓𝑇𝑇𝑓𝑓𝑖𝑖
𝑇𝑇𝑐𝑐𝑒𝑒𝑅𝑅𝑖𝑖

• N – number of copies of the program that are run
simultaneously

SPEC Benchmark
Geometric Mean

• Averages ratios for all 12 integer benchmarks
• Used to determine the overall performance measure

𝑓𝑓𝐺𝐺 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖

⁄1 𝑛𝑛

17.5 × 14 × 13.7 × 17.6 × 14.7 × 18.6 × 17 × 31.3 × 23.7 × 9.23 × 10.9 × 14.7 1/12 = 18.5

Amdahl’s Law

• Speedup in one aspect of technology/design
does not result in a corresponding improvement
in performance

𝑀𝑀𝑝𝑝𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑝𝑝 =
𝐸𝐸𝑒𝑒𝑇𝑇𝑙𝑙𝑒𝑒𝑅𝑅𝑇𝑇𝑙𝑙𝑓𝑓 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑇𝑇𝑓𝑓𝑙𝑙𝑓𝑓𝑇𝑇 𝑇𝑇𝑓𝑓𝑒𝑎𝑎𝑓𝑓𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑅𝑅
𝐸𝐸𝑒𝑒𝑇𝑇𝑙𝑙𝑒𝑒𝑅𝑅𝑇𝑇𝑙𝑙𝑓𝑓 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑓𝑓𝑅𝑅𝑇𝑇𝑓𝑓 𝑇𝑇𝑓𝑓𝑒𝑎𝑎𝑓𝑓𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑅𝑅

Amdahl’s Law Example
• Single vs. Multiple processors

𝑀𝑀𝑝𝑝𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑝𝑝 =
𝑋𝑋
𝑌𝑌

=
𝑇𝑇 1 − 𝑓𝑓 + 𝑇𝑇𝑓𝑓

𝑇𝑇 1 − 𝑓𝑓 + 𝑇𝑇𝑓𝑓
𝑁𝑁

=
1

1 − 𝑓𝑓 + 𝑓𝑓
𝑁𝑁

• 𝑋𝑋: Time to execute a program on a single processor
• 𝑌𝑌: Time to execute a program on N parallel processors
• 𝑇𝑇: Total execution time
• 𝑓𝑓: Fraction of code executed on parallel processors (no scheduling

overhead)
• (1 − 𝑓𝑓): Fraction of code executed on a single processor

1. When 𝑓𝑓 is small, the use of parallel processors has little effect
2. As 𝑁𝑁 → ∞, speedup bound by 1/ 1 − 𝑓𝑓

• Diminishing returns for using more processors

Amdahl’s Law Example

CPSC-440 Computer System Architecture

Lecture 3
Von Neumann Machines (IAS)

History of Computers
First Generation: Vacuum Tubes

• ENIAC
• Electronic Numerical Integrator And Computer

• Designed and constructed at the University of
Pennsylvania
• Started in 1943 – completed in 1946
• By John Mauchly and John Eckert

• World’s first general purpose electronic digital
computer
• Army’s Ballistics Research Laboratory (BRL) needed a

way to supply trajectory tables for new weapons
accurately and within a reasonable time frame

• Was not finished in time to be used in the war effort
• Its first task was to perform a series of calculations

that were used to help determine the feasibility of
the hydrogen bomb

• Continued to operate under BRL management until
1955 when it was disassembled

ENIAC

Weighed
30

tons

Occupied
1500

square
feet
of

floor
space

Contained
more

than
18,000

vacuum
tubes

140 kW
Power

consumption

Capable
of

5000
additions

per
second

Decimal
rather

than
binary

machine

Memory
consisted

of 20
accumulators,

each
capable

of
holding

a
10 digit
number

Major
drawback

was the need

for manual

programming

by setting
switches

and
plugging/

unplugging
cables

ENIAC

John von Neumann
EDVAC (Electronic Discrete Variable Computer)

• First publication of the idea was in 1945
• Stored program concept
• Attributed to ENIAC designers, most notably the

mathematician John von Neumann
• Program represented in a form suitable for storing in

memory alongside the data
• IAS computer
• Princeton Institute for Advanced Studies
• Prototype of all subsequent general-purpose

computers
• Completed in 1952

Structure of von Neumann Machine

IAS Memory Formats
• The memory of the IAS

consists of 1000 storage
locations (called words) of
40 bits each

• Both data and instructions
are stored there

• Numbers are represented in
binary form and each
instruction is a binary code

Structure of IAS Computer
Registers
• Memory Buffer Register (MBR)

• Word to be stored/received in/from memory or
I/O unit

• Memory Address Register (MAR)
• Memory Address of the word to be (written

from)/(read into) the MBR
• Instruction Register (IR)

• Contains 8-bit opcode
• Instruction Buffer Register (IBR)

• Temporarily holds the right-hand instruction
• Program Counter (PC)

• Contains address of the next instruction pair to be
fetched from memory

• Accumulator (AC) and Multiplier Quotient
(MQ)
• Employed to temporarily hold operands and

results of ALU operations

Table 2.1

The IAS
Instruction

Set

Table 2.1: The IAS Instruction Set

Example 1

• What would the machine code instruction
look like to add the contents of memory
address 5CD (HEX) with the accumulator and
stores the result back into the accumulator?

Symbolic Description
ADD M(X) Add M(X) to AC; put the result in AC

0 8 20 28 39

0000 0101 0101 1100 1101 XXXX XXXX XXXX XXXX XXXX

Left Instruction Right Instruction

Opcode OpcodeAddress Address

Example 1
Left instruction first

Example 1

???

The execution path would
depend on the right instruction

Example 2

• What is the assembly language code for the
program:

Address Machine Code
06B 21C6F14XXX

NOTE: IAS doesn’t actually have an assembly language

0 8 20 28 39

0010 0001 1100 0110 1111 0001 0100 XXXX XXXX XXXX

Left Instruction Right Instruction

Opcode OpcodeAddress Address

Example 2

• What is the assembly language code for the
program:

Address Machine Code
06B 21C6F14XXX

0 8 20 28 39

0010 0001 1100 0110 1111 0001 0100 XXXX XXXX XXXX

Left Instruction Right Instruction

Opcode OpcodeAddress Address

Address Symbolic
06B STOR M(C6F)

LSH

Example 3

• Write an IAS program to compute the results
of the following equation:

𝑌 =
𝑁(𝑁 + 1)

2
• Assume that the result of the computation

doesn’t overflow and N is a positive integer

Example 3
Location Instruction/Value Comments

0 <> Constant (N) [initialized to some value]
1 1 Constant; Integer value = 1
2 2 Constant; Integer value = 2
3 0 Variable Y (initialized to integer zero)
4 0 Variable X (initialized to integer zero)
5L LOAD M(0) N → AC
5R ADD M(1) AC + 1 → AC; (N+1)
6L STOR M(4) AC → X; X=N+1
6R LOAD MQ,M(4) X→ MQ; MQ=N+1
7L MUL M(0) MQ*M(0) → N(N+1) → AC
7R DIV M(2) AC/2 → AC; AC=N(N+1)/2
8L STOR M(3) AC → Y; saving the Sum in variable Y
8R JUMP M(8,20:39) Jump to 8R; Done

𝑌 =
𝑁(𝑁 + 1)

2

Example 4

• Write an IAS program to compute the results
of the following equation:

𝑌 =)
!"#

$

𝑋

• Assume that the result of the computation
doesn’t overflow, and that X, Y, and N are
positive integers

Example 4
Location Instruction/Value Comments

0 <> Constant (N) [initialized to some value]
1 1 Constant (loop counter increment)
2 1 Variable i (loop index value; current)
3 1 Variable Y = Sum of X values (Initialized to

One)
4 LOAD M(0) N → AC (the max limit)
5L SUB M(2) Compute N–i → AC
5R JUMP + M(6,20:39) If AC > 0 [i < N] then jump to 6R
6L JUMP M(6,0:19) Loop here (HALT)
6R LOAD M(2) i<N so continue; Get loop counter i
7L ADD M(1) i+1 in AC
7R STOR M(2) AC → i
8L ADD M(3) i + Y in AC
8R STOR M(3) AC → Y
9L JUMP M(5,0:19) Jump to 5L

𝑌 =)
!"#

$

𝑋

Homework Problems

• Problems are available on Canvas

Study Guide Exam #1 — CS 440 Computer Architecture

Jared Dyreson
California State University, Fullerton

February 24, 2021

Contents

1 Lecture 00 2
1.1 Matrices . 2

2 Lecture 01 3

3 Lecture 02 4
3.1 Benchmark Types . 4
3.2 Amdahl’s Law . 5

4 Lecture 03 5

1

1 Lecture 00

1.1 Matrices

Example Usage

a = [1 2 ; 21]
% 1 2
% 2 1

a ∗ a

% 5 4
% 4 5

1. Matrix multiplication is not commutative

2. Inverse function is the same as division

3. Cannot invert all matrices (only with determinant not equal to 0)

4. System of equations can be solved

5. Ranges follow this pattern “begin:step:end”

6. Steps can be any decimal value

2

2 Lecture 01

1. Difference between architecture and organization

• Architecture: Specifications of the system being built, which are a set of rules/meth-
ods. These describe the functionality, organization and implementation of computer
systems.

• Organization: Deals with the hardware components of a computer system, which
include I/O devices, the CPU, storage and primary memory devices (RAM).

2. Four structural components for computer:

• CPU

• Volatile Memory (RAM)

• I/O

• System Interconnections

3. Four structural components for computer:

• Control Unit (CU)

• Arithmetic Logic Unit (ALU)

• Registers

• CPU Interconnections

3

3 Lecture 02

1. Performance Assessment

• Qualitative: relating to the possession of qualities without reference to the quan-
tities involved

• Quantitative: relating to a measurable and numeric representation of a given entity
(this is how we gauge the performance of a chipset)

2. CPU Time: Clock cycles for a program (cycles)
Clock Frequency (cycles/sec) . The amount of time it takes for a CPU to

complete a given set of instructions.

3. CPI: Cycles Per Instruction

4. IPC: Instructions Per Cycle (inverse of CPI)

5. MIPS: Million(s) of Instructions per Second

6. MFLOPS: Million(s) of Floating Point Operations Per Second

7. For benchmarks however, this will not suffice as it is hard to see which machine is faster

3.1 Benchmark Types

1. Total Execution Rate: If Program A and B have equal amount of instructions, you
can sum them up individually

2. Average Execution Rate: When Program A and B have an unequal amount of in-
structions

3. Harmonic Mean: The reciprocal of the arithmetic mean of the reciprocals. Alternative
to average execution rate.

4. SPEC Benchmark: Measures the ability of a computer to complete a single task.

ri =
Trefi
Tsuti

• Trefi - execution time of benchmark program i on the reference system

• Tsuti - execution time of benchmark program i on the system under test

• The larger the ratio, the higher the speed

4

3.2 Amdahl’s Law

Adding more processors does not make the program execution time improve.

Speedup =
Execution time before enhancement

Execution time after enhancement

Good Video Explanation

The more of the code that is running on multiple processors, it will speed up, but it will
become saturated.

4 Lecture 03

1. ENIAC does not use binary number

2. Binary only has 1’s and 0’s

3. Can utilize left/right bit shifts (dividing/multiplying by 2), boolean executions

4. You can’t use this with decimal numbers (base 10)

5. It never had any memory, so programs could not be stored

6. Von Neumann machines has same four components of computer

7. IAS Memory formats, which hold 40 bits and both instructions/data are stored

• Left Hand Side

• Opcode: 0 - 7

• Address: 8 - 19

• Right Hand Side

• Opcode: 20 - 27

• Address: 28 - 39

5

https://www.youtube.com/watch?v=WdRiZEwBhsM

6

	CPSC 440 - Test 01
	CPSC 440 - Lecture 00 Matlab
	PRESENTATION TITLE
	Matlab
	Free Matlab for Students
	Matlab Default View
	Command Window
	Workspace Window
	Command History Window
	Current Folder Window
	Present Working Directory
	Help Docs
	Creating Scripts
	Script Editor
	Script Editor
	Script Editor
	Getting Started
	Matrices
	Matrices
	Matrices
	Matrices
	Matrices
	Systems of Equations
	Loops
	Graphing
	Graphing
	Common Commands and Operators
	Useful Tutorials

	CPSC 440 - Lecture 01
	CPSC 440 - Lecture 02
	CPSC-440 Computer System Architecture
	Performance
	CPU Performance Equation
	What if different instructions have �different CPIs?
	MIPS and MFLOPS Rates
	Example
	Improve CPU time
	Benchmarks
	Example
	Standard Performance Evaluation Corporation (SPEC) Benchmark
	Performance Comparison
	Total Execution Rates
	Average Execution Rate
	Harmonic Mean
	Total Execution Time Example
	SPEC Benchmark�Speed Metrics
	SPEC Benchmark�Speed Metrics
	SPEC Benchmark�Rate Metric
	SPEC Benchmark�Geometric Mean
	Amdahl’s Law
	Amdahl’s Law Example
	Amdahl’s Law Example

	CPSC 440 - Lecture 03

	Study_Guide
	Lecture 00
	Matrices

	Lecture 01
	Lecture 02
	Benchmark Types
	Amdahl's Law

	Lecture 03

