
1

Artificial Intelligence
CPSC 481

AI as Knowledge Representation

and Search:

Heuristic Search for Problem Solving

2

Lecture Overview

⚫ Heuristics in problem solving

⚫ Heuristic search algorithms

⚫ Hill-climbing,

⚫ Simulated annealing,

⚫ Best-first search and A*,

⚫ Constraint satisfaction,

⚫ Mini-max for game playing

⚫ Advanced game playing

⚫ Performance evaluation of heuristic search

⚫ Criteria for evaluation of heuristics

⚫ Complexity and efficiency issues

⚫ AI-complete and AI-hard

n n!

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20922789888000

17 355687428096000

18 6402373705728000

19 121645100408832000

20 2432902008176640000

25 1.551121004×1025

50 3.041409320×1064

70 1.197857167×10100

100 9.332621544×10157

450 1.733368733×101000

1000 4.023872601×102567

3

Search space for Tic-Tac-Toe:

9!

Search space for Go! game:

361!

Search space for chess:

64!

1010 ms = 115.7 days

Heuristics

⚫ Main problems of BFS and DFS

⚫ Brute force approach leading to combinatorial explosion

⚫ No utilization of information/strategies to make it efficient

⚫ Many straightforward search algorithms can be improved

by utilizing information and intelligent strategy, called

“heuristics”

⚫ Heuristics is the study of the methods and rules of discovery

and invention (Eureka “I have found it!”), commonly used by human.

⚫ Improvement can be made by intelligent strategies based on

utilization of information or knowledge.

⚫ Heuristic is necessary when there is no perfect solution.

⚫ E.g., playing chess or go game, many optimization problems,

most AI problems. 4

5

First Three Levels of the Tic-Tac-Toe

State Space Reduced by Symmetry

*There are really

three initial moves

(corner, center, side).

*But symmetry in this

game (knowledge)

decreases the search

space.

Search space for Tic-Tac-Toe game

at the first state: 9!

What heuristics can we use to determine better move?

6

The “most wins” Heuristic Applied to

the First Children in Tic-Tac-Toe

7

Heuristically Reduced State Space

for Tic-Tac-Toe

Heuristic value calculated

by counting possible wins

2/3 of all the search

space is pruned away

with the first move.

8

Search Space for the Travelling

Salesman Problem

*Each arc is marked with the total

weight of all paths from the start node

(A) to its endpoint.

What heuristics can be used to

improve the efficiency of search

(reducing the search space)?

9

Looking for the Shortest Path with the

Nearest Neighbor Path

Is it optimal solution?

*Note: if (A,C) is 125, this path (A, E, D, B, C, A), at a cost of 375, is

the shortest path. If (A, C) is 300, then the cost is 550, not the

shortest. The comparatively high cost of arc (C, A) defeated the

heuristic (nearest neighbour) but it is better than most random paths.

?

*Neighbor path is in bold.

How to Define Heuristics

⚫ General approaches to define heuristics

⚫ Identify the goal of the problem.

⚫ Collect and analyze available information and use

background/domain knowledge to achieve the goal.

⚫ Identify all possible states and eliminate unnecessary states

using the information to reduce the search space if possible.

⚫ Define a method(s) to quantitatively evaluate each state

(heuristics).

⚫ Formulate the heuristics into a function (heuristic function).

⚫ Try some examples

⚫ Tic-tac-toe, 8-puzzle, Chess, Go

⚫ Auto pilot for car, Mars rover, Robot vacuum
10

How to Define a Heuristic Function

⚫ A heuristic function, f(n) = g(n) + h(n)

⚫ g(n): the measure (distance or cost) from the start to current state, n,

⚫ E.g., count 0 for the beginning state and is incremented by 1 for each level of

the search.

⚫ h(n): a heuristic estimate of the measure from state n to a goal.

⚫ h() guides search toward heuristically promising states while

g() prevents search from indefinitely fruitless path.

⚫ If two states are the same or nearly the same, it is generally preferable

to examine the state that is nearest to the root state of the graph (initial

state) since it will give a greater probability of being on the shortest path

to the goal.

⚫ Cost vs. Reward

⚫ If f() is a cost function, the smaller the better.

⚫ If f() is a reward function, the larger the better. 11

12

Some Heuristics for the 8-puzzle Game

Possible heuristics h():
h1() Counts the tiles out of place compared

with the goal state in each state.

h2() Sum all the distances (Manhattan

distance) by which the tiles are out of place.

h3() Multiplies a small number, e.g., 2 times

each direct tile reversal.

13

Three Heuristics Applied to States in the 8-puzzle

*What could be the problem of each heuristic?

*What happens if a heuristic function returns non-unique and conflicting scores?

* Devising good heuristics based on the limited information is not easy but critical in

solving a complex problem!

h1(n) h2(n) h3(n) n represents a state, e.g., s1, s2, s3

14

The Heuristic f() Applied to States in the 8-puzzle

How can we utilize f(n) in DFS?

Try to code the heuristic

function, f().

Hill-climbing

15
“Landscape” of search for max value

Simple Hill-climbing search

16

Algorithm sketch
1. Check if the current state is a solution, if so return it

else go to next step.

2. Expand the current state of the search.

3. Evaluate its children states using a heuristic

function.

4. Select the FIRST better state for further expansion.

Continue steps 1 - 4 until it finds a solution or reach no

better state.

Simple Hill-climbing as a Heuristic Search

⚫ Local search
⚫ Keep track of single current state

⚫ Move only to neighboring states

⚫ Ignore paths

⚫ Advantages:
⚫ Use very little memory

⚫ Can often find reasonable solutions in large or infinite (continuous)
state spaces.

⚫ One of the simplest search methods based on heuristics. It works

like DFS that utilizes a heuristic.

17

Problems of Simple Hill-climbing

18

Plateau

Local maxima

may get stuck and may fail to find the best solution when it reaches a state that has no

other better states.

Plateau

may get confused by the result of evaluation when the best is not clear
Shoulder

may get confused by the result of evaluation when the best is not the direct successor

Variations of Hill-climbing

⚫ Simple Hill-climbing focusing on step 3
1. Check if the current state is a solution, if so return it else go to next step.

2. Expand the current state of the search.

3. Evaluate its children states.

4. Select the FIRST better state for further expansion.

Continue steps 1 – 4 until it finds a solution or reach a no better state.

⚫ Improvement at step 3

⚫ All successors are compared and select the best state.

⚫ Called Steepest-ascent/descent Hill-climbing or Gradient Search

▪ The decision on descent or ascent depends on the heuristics.

19

Gradient ascent/descent search

20

function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current  MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor  a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

current  neighbor

21

Plateau Problem in Hill-Climbing with 3-

Level Look Ahead

*Hill-climbing can get confused

in this case (plateau) as the

cost of all paths are the same

or similar.

How can we handle the local maxima problem?

Student Participation: Hill-

climbing

22

Can these variations of Hill-climbing solve

local maximum, shoulder, plateau problems?

Simulated Annealing (SA)

⚫ The name and inspiration of SA come from annealing in

metallurgy, a technique involving heating and controlled cooling of

a material to reduce their defects.

⚫ A generic probabilistic meta-heuristic for the global optimization

problem.

23

Physical Interpretation of Simulated

Annealing

⚫ Annealing = physical process of cooling a liquid or metal

until particles achieve a certain frozen crystal state

⚫ simulated annealing:

▪ free variables are like particles

▪ seek “low energy” (high quality) configuration

▪ get this by slowly reducing temperature T, which particles

move around randomly

24

Is SA search able to handle the local

maxima?

25

Despite the many local maxima in this graph, the global maximum can still be found

using simulated annealing.

By Kingpin13 - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=25010763

Search using Simulated Annealing

⚫ Simulated Annealing = hill-climbing with non-deterministic search

⚫ Basic ideas:

⚫ like hill-climbing identify the quality of the local improvements

⚫ instead of picking the best move, pick one randomly

⚫ say the change in objective function is  (big delta)

⚫ if  is positive, then move to that state

⚫ otherwise:

⚫ move to this state with probability proportional to 

⚫ thus: worse moves (very large negative ) are executed less often

⚫ however, there is always a chance of escaping from local

maxima over time, make it less likely to accept locally bad moves

⚫ Can also make the size of the move random as well, i.e., allow

“large” steps in state space
26

Simulated Annealing

27

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward steps

current  MAKE-NODE(INITIAL-STATE[problem])

for t  1 to ∞ do

T  schedule[t]

if T = 0 then return current

next  a randomly selected successor of current

∆E  VALUE[next] - VALUE[current]

if ∆E > 0 then current  next

else current  next only with probability e∆E /T

Algorithm sketch
At each step, the SA heuristic considers some neighbor, s' of the current state s,

and probabilistically decides moving from s to s'.
The probabilities are chosen so that the system ultimately tends to move to states of

lower energy (annealing schedule, p = eE/T).

Defining an annealing schedule, p is critical.

This step is repeated until the system reaches a state that is solution, good

enough for the application, or until a given computation budget has been

exhausted.

More Details on Simulated Annealing

28

⚫ Lets say there are 3 moves available, with changes in the

objective function of E1 = -0.1, E2 = 0.5, E3 = -5. (Let T =

1).

⚫ pick a move randomly:

⚫ if E2 is picked, move there.

⚫ if E1 or E3 are picked, probability of move = exp(E/T)

⚫ move 1: prob1 = exp(-0.1) = 0.9,

▪ i.e., 90% of the time we will accept this move

⚫ move 3: prob3 = exp(-5) = 0.05

▪ i.e., 5% of the time we will accept this move

⚫ T = “temperature” parameter

⚫ high T => probability of “locally bad” move is higher

⚫ low T => probability of “locally bad” move is lower

⚫ typically, T is decreased as the algorithm runs longer

▪ i.e., there is a “temperature schedule”

Simulated Annealing in Practice

29

⚫ The method was proposed in 1983 by IBM

researchers for solving VLSI layout problems

(Kirkpatrick et al, Science, 220:671-680, 1983).

⚫ theoretically will always find the global optimum

(the best solution)

Problems of SA

⚫ Useful for some problems, but can be very slow
▪ slowness comes about because T must be decreased very

gradually to retain optimality

⚫ In practice how do we decide the rate at which to

decrease T? (this is a practical problem with this

method)

⚫ Unfortunately, the applicability of simulated

annealing is problem-specific because it relies

on finding lucky jumps that improve the position.

In such extreme examples, hill climbing will most

probably produce a local maxima.

30

References

⚫ George Fluger, Artificial Intelligence: Structures and Strategies for

Complex Problem Solving, 6th edition, Chapter 4, Addison Wesley,

2009.

⚫ Russel and Norvig, Artificial Intelligence: A Modern Approach, 3rd

edition, Prentice Hall, 2010.

31

