rious CALIFORNIA STATE UNIVERSITY

i FULLERTON

CPSC-440 Computer System Architecture

Lecture 3
Von Neumann Machines (IAS)

History of Computers
First Generation: Vacuum Tubes

* ENIAC
e Electronic Numerical Integrator And Computer

* Designed and constructed at the University of
Pennsylvania
e Started in 1943 — completed in 1946
* By John Mauchly and John Eckert

* World'’s first general purpose electronic digital
computer

* Army’s Ballistics Research Laboratory (BRL) needed a
way to supply trajectory tables for new weapons
accurately and within a reasonable time frame

* Was not finished in time to be used in the war effort
e |ts first task was to perform a series of calculations
that were used to help determine the feasibility of
the hydrogen bomb

e Continued to operate under BRL management until
1955 when it was disassembled

§ ! CALIFORNIA STATE UNIVERSITY

** FULLERTON

SV

Occupied
1500
Weighed square
30 feet
tons of
floor

space

Contained
more
than

18,000
vacuum

tubes

S | CALIFORNIA STATE UNIVERSITY

% FULLERTON

140 kW
Power

consumption

Capable
of;
5000
additions
per.

second

Decimal
rather
than
binary
machine

VMiemory.
consisted

of 20
accumulators,

each
capable
of.
holding
a
10 digit
number.

Major

drawback

was the need

for manual
programming
by setting
switches
and
plugging/

unplugging
cables

ENIAC

..\.
=
7
o
>
ya
=
|99
=
-
=
v
<
p
o
-
e
=
e
&

Z
=
a4
(]
—
—
=,
73

John von Neumann
EDVAC (Electronic Discrete Variable Computer)

* First publication of the idea was in 1945

» Stored program concept

e Attributed to ENIAC designers, most notably the
mathematician John von Neumann

* Program represented in a form suitable for storing in
memory alongside the data

* |AS computer
* Princeton Institute for Advanced Studies

* Prototype of all subsequent general-purpose
computers

* Completedin 1952

| CALIFORNIA STATE UNIVERSITY

FULLERTON

Structure of von Neumann Machine

Central Processing Unit (CPU)

Vi E
4 7
; »| Arithmetic-
: Logic
- Unit (CA) .
Main | : 10
Memory : : Equip-
(M) E ; ment
. [
: -—:—’
—>| Program :
: Control '
— Unit (CC) |
: V : |V
|4 : :

Figure 2.1 Structure of the IAS Computer

| CALIFORNIA STATE UNIVERSITY
FULLERTON

|IAS Memory Formats

e The memory of the IAS * Both data and instructions
consists of 1000 storage are stored there
locations (called words) of .

Numbers are represented in
binary form and each
instruction is a binary code

40 bits each

0 1
sign bit (a) Number word
left instruction right instruction
— i —— — B
0 8 20 28 39
~ ~ - ~ - ~ i ~ -
opcode address opcode address

(b) Instruction word

Figure 2.2 IAS Memory Formats

% CALIFORNIA STATE UNIVERSITY

==/ FULLERTON

Structure of IAS Computer

e |~ e e s rcrcrr e r e """ --
Reg|Ste rs Arithmetic-logic unit (ALU)

 Memory Buffer Register (MBR)

' :
| :
, '
|}
. . l
* Word to be stored/received in/from memory or ' \ Input-
| /O unit : Arithmetic-logic ' output
' :
| :
, '
' |}
' |}
')

circuits .
« Memory Address Register (MAR) equipment

* Memory Address of the word to be (written
from)/(read into) the MBR

Instruction Register (IR) Leoo.o.-. 0 I R) .
* Contains 8-bit opcode Instructions
Instruction Buffer Register (IBR) and data
* Temporarily holds the right-hand instruction

 Program Counter (PC)

MBR

1 1
1 1
1 1
: IBR PC :
* Contains address of the next instruction pair to be ; '

fetched from memory : — : Main
. . . I I

 Accumulator (AC) and Multiplier Quotient ! IR MAR ; memory
(MQ) : :
* Employed to temporarily hold operands and X . X
results of ALU operations ! Control [T%. !
. circuits : signals T

: .
1 1

Program control unit

L et

Symbolic

Instruction Type Opcode Representation Description
00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC
00001001 LOAD MQ M(X) Transfer contents of memory location X to
MQ
00100001 STOR M(X) Transfer contents of accumulator to memory
Data transfer location X
00000001 LOAD M(X) Transfer M(X) to the accumulator
00000010 LOAD -M(X) Transfer -M(X) to the accumulator
00000011 LOAD IM(X)I Transfer absolute value of M(X) to the
accumulator
00000100 LOAD -IM(X)I Transfer -IM(X)I to the accumulator
Unconditional 00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)
branch 00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)
00001111 JUMP+ M(X,0:19) If number in the accumulator is nonnegative,
.. take next instruction from left half of M(X)
Conditional branch) . .
00010000 JUMP+ M(X,20:39) If number in the accumulator is nonnegative,
take next instruction from right half of M(X)
00000101 ADD M(X) Add M(X) to AC; put the result in AC
00000111 ADD IM(X)I Add IM(X)I to AC; put the result in AC
00000110 SUB M(X) Subtract M(X) from AC; put the result in AC
00001000 SUB IM(X)! Subtract IM(X)!| from AC; put the remainder
in AC
00001011 MUL M(X) Multiply M(X) by MQ; put most significant
Arithmetic pits of result in AC, put least significant bits
in MQ
00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC
00010100 LSH Multiply accumulator by 2; i.e., shift left one
bit position
00010101 RSH Divide accumulator by 2; i.e., shift right one
position
00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
Address modify rightmost.bits of AC ‘
00010011 STOR M(X,28:39) Replace right address field at M(X) by 12

rightmost bits of AC

Table 2.1: The IAS Instruction Set

CALIFORNIA STATE UNIVERSITY

FULLERTON

Table 2.1

The IAS

Instruction
Set

Example 1

e What would the machine code instruction

look like to adc
address 5CD (H

stores the resu

Left Ins’fruction

the contents of memory

EX) with the accumulator and
t back into the accumulator?

Right Inftruction

[

| |

0 8 20 28 39
0000 0101 0101 1100 1101 XXXX XXXX XXXX XXXX XXXX
\ \ \ \ l
Y Y Y Y
Opcode Address Opcode Address
ADD M(X) Add M(X) to AC; put the result in AC

| CALIFORNIA STATE UNIVERSITY

FULLERTON

Example 1

A
Yes Is next No
instruction MAR+—PC . . .
Fetch INo memory in IBR? Left InStrUCtIOn f| rSt
; access V
cvcle .
required MBR “~M(MAR)
e it
- X Arithmetic-logic unit (ALU) 1
1
]
1
— N . 1 =
IR —IBR (0:7) IR —MBR (20:27) Tl 'Bl'; ’;‘::3:‘::’-59’ \ I“I fo— iw] |
y -— . | P - : . =M . 1
MAR-—IBR (8:19) MAR ~— MBR (28:39) required? MAR - MBR (8:19) . : T
' Arithmetic-logic ' output
: circuits [.
o » equipment
L]
' 1
\ 4 ' X
)) ! | MBR | 1
PC—PC+1 : X
1
!
v Decode instructioninIR) mesm-e--- F1-l~"f~~~=~~~- !
i AC~— M(X) Go to M(X, 0:19) IfAC > 0 then AC+—AC+M(X) Instructions
go to M(X, 0:19 and data
> : "]
Execution IsAC>0? ! 1
cycle 1 1
¥ \ . 2 : IBR | PC :
MBR < M(MAR) PC—MAR MBR ~—~M(MAR) : :
| y : — : Main
: IR | M "\ﬂ : mc:llory
AC+—MBR AC+—AC + MBR ! 1
x 1 1
1 1
1 . 1
- Yoo N J Yy Y : Lannn '_°’(‘omrol :
Ll ' circuits : signals | A ddresses
' L . Addresses
M(X) = contents of memory location whose address is X ' e
1 Program control unit 1

(i:j) = bits i through j

Figure 2.4 Partial Flowchart of IAS Operation

% CALIFORNIA STATE UNIVERSITY

** FULLERTON

‘ Start ’

A

Yes Is next No
instruction MAR+—PC
. {0 memory in IBR?
F e“;h access +
cycle :
required MBR “~M(MAR)
IR —IBR (0:7) IR —MBR (20:27) instruction “?;:’;;';:ﬁ:f;?’
MAR-—IBR (8:19)| |MAR —MBR (28:39) required? MAR-~—MER (8:19)
PC—PC +1 399
v Decode instruction in IR
R AC—MX) Go to M(X, 0:19) If AC > 0 then AC—AC + M(X)
go to M(X, 0:19
Execution ISAC > 07
cycle
\ 4 A Y
MBR « M(MAR}) PC~—MAR MBR “—M(MAR)
y ¥
AC-—MBR AC+—AC + MBR
R 2 R . 4 . 4 ¥

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

Figure 2.4 Partial Flowchart of IAS Operation

CALIFORNIA STATE UNIVERSITY

FULLERTON

Examp

le 1

The execution path would
depend on the right instruction

1
Arithmetic-logic unit (ALU) '
'
'
AC J—— M@ |
B oo
'
' Input-
Arithmetic-logic ' output
circuits 1 N
' equipment
'
'
'
| MBR | 1
'
'
-------- e 4 ---i—-------l
Instructions

and data

!

Control

circuits Control

« signals

Main
memory
M

Addresses

2]
R
IR J
=]
i

Program control unit

Example 2

 What is the assembly language code for the

program:
Left Ins’fruction Right Inkstruction
(Y \
0 8 20 28 39
0010 0001 1100 01101111 0001 0100 XXXX XXXX XXXX
\ \ X \ l
Y Y Y Y
Opcode Address Opcode Address
Machine Code
06B 21C6F14XXX

NOTE: IAS doesn’t actually have an assembly language

‘ CALIFORNIA STATE UNIVERSITY
% FULLERTON

Example 2

 What is the assembly language code for the

program:
Left Ins’fruction Right Inkstruction
(Y \
0 8 20 28 39
0010 0001 110001101111 0001 0100 XXXX XXXX XXXX
\ \ X \ l
Y Y Y Y
Opcode Address Opcode Address
Machine Code
06B 21C6F14XXX
06B STOR M(C6F)

g CALIFORNI
e LSH
%

Example 3

* Write an IAS program to compute the results

of the following equation:
N(N + 1)

2
* Assume that the result of the computation

doesn’t overflow and N is a positive integer

Y =

B T ERTON

Example 3 N+

2

lnstructnonIValue

Constant (N) [initialized to some value]
1 Constant; Integer value = 1

_ 2 Constant; Integer value = 2

_ 0 Variable Y (initialized to integer zero)
_ 0 Variable X (initialized to integer zero)

ER LoAD M(0) N > AC

ADD M(1) AC+1 - AC; (N+1)

STOR M(4) AC > X; X=N+1

[LoAD MQ,M(4) X-> MQ; MQ=N+1

MUL M(0) MQ*M(0) = N(N+1) = AC

DIV M(2) AC/2 - AC; AC=N(N+1)/2

STOR M(3) AC - Y; saving the Sum in variable Y
JUMP M(8,20:39) Jump to 8R; Done

E CALIFORNIA STATE UNIVERSITY
 FULLERTON

Example 4

* Write an IAS program to compute the results
of the following equation:

N
Y=2X
X=1

* Assume that the result of the computation
doesn’t overflow, and that X, Y, and N are
positive integers

B T ERTON

Example 4 =3

X=1
I <> Constant (N) [initialized to some value]
1 Constant (loop counter increment)
2 K Variable i (loop index value; current)
- 1 Variable Y = Sum of X values (Initialized to
One)

_ LOAD M(0) N = AC (the max limit)
SUB M(2) Compute N-i - AC

E_JUMP+M(6 20:39) If AC> 0 [i < N] then jump to 6R
R JumP M(6,0:19) Loop here (HALT)

_ LOAD M(2) i<N so continue; Get loop counter i
F/EE ADD M(1) i+1 in AC

_ STOR M(2) AC > i

ADD M(3) i +Yin AC

E_ STOR M(3) AC > Y

EIR JUMP M(5,0:19) Jump to 5L

Homework Problems

* Problems are available on Canvas

B T ERTON

