

CPSC-440 Computer System Architecture

Lecture 4 Processor Structure and Instruction Cycles Pipelining Basic

What is a Program?

- A sequence of instructions (steps)
 - An instruction
 - A binary number
 - Consisting of two parts
 - Opcode: what to do
 - Operand: what data should be used
 - Example:

Opcode	Operand
--------	---------

- For each instruction (step), an arithmetic or logical operation is done
- For each operation, a different set of control signals is needed

Function of Control Unit

- Each operation is associated with a unique opcode
 - e.g., ADD, MOVE
- The hardware interprets the opcode and issues the control signals
- We have a computer!

Computer Components: Top Level View

Figure 3.2 Computer Components: Top-Level View

Instruction Cycle

- Two basic steps:
 - Fetch
 - Execute

Fetch Cycle

- Program Counter (PC) holds address of next instruction to fetch
- CPU fetches instruction from memory location pointed to by PC
- Increment PC
 - Unless told otherwise
- Instruction loaded into Instruction Register (IR)
- CPU interprets instruction and performs required actions

Execute Cycle

- Processor-Memory
 - Data transfer between CPU and main memory
- Processor-I/O
 - Data transfer between CPU and I/O module
- Data Processing
 - Some arithmetic or logical operation on data
- Control
 - Alteration of sequence of operations
 - e.g., jump
- An instruction's execution may involve a combination of above

Example of Program Execution

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

IR: instruction register

Example of Program Execution

0 3		15	Memory 300 1 9 4 0	CPU Registers	Memory 300 1 9 4 0	CPU Registers
Opcode	Operand (Address)		$ \begin{array}{r} 301 & 5 & 9 & 4 & 1 \\ 302 & 2 & 9 & 4 & 1 \\ \vdots \\ \end{array} $	1 9 4 0 IR	301 5 9 4 1 302 2 9 4 1	$\int \frac{0003}{1940} R$
• Add	to AC from memory		940 0 0 0 3 941 0 0 0 2 Step 1		940 0 0 0 3 941 0 0 0 2 Step 2	,
• 0	pcode: 0x5		Memory 300 1 9 4 0	CPU Registers	Memory 300 1 9 4 0	CPU Registers
• 0	perand (Address): 0x941		$ \begin{array}{c} 301 & 5 & 9 & 4 & 1 \\ 302 & 2 & 9 & 4 & 1 \\ \end{array} $	0 0 0 3 AC 5 9 4 1 IR	$ \begin{array}{r} 301 \\ 5 \\ 9 \\ 4 \\ 1 \\ 302 \\ 2 \\ 9 \\ 4 \\ 1 \end{array} $	$ \begin{array}{c} 0 & 0 & 0 & 5 & AC \\ 5 & 9 & 4 & 1 & R \end{array} $
0 0		45	940 0 0 0 3 941 0 0 0 2		940 0 0 0 3 941 0 0 0 2	3+2=5
0 3		15	Step 3		Step 4	
0 1 0 1	1 0 0 1 0 1 0 0 0 0	0 1	Memory 300 1 9 4 0 301 5 9 4 1 302 2 9 4 1	CPU Registers 3 0 2 PC 0 0 0 5 AC 2 9 4 1 IR	Memory 300 1 9 4 0 301 5 9 4 1 302 2 9 4 1	CPU Registers 3 0 3 PC 0 0 0 5 AC 2 9 4 1 IR
• PC: p	program counter		940 0 0 0 3 941 0 0 0 2		940 0 0 0 3 941 0 0 0 5)
• AC: a	accumulator		Step 5		Step 6	

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

IR: instruction register

Example of Program Execution

0 3		15	Memory 300 1 9 4 0	CPU Registers	Memory 300 1 9 4 0	CPU Registers
Opcode	Operand (Address)		$ \begin{array}{c} 301 & 5 & 9 & 4 & 1 \\ 302 & 2 & 9 & 4 & 1 \\ & & \vdots \\ \end{array} $	▲ 1 9 4 0 IR	301 5 9 4 1 302 2 9 4 1	0003AC 1940IR
• Store	e AC to memory		940 0 0 0 3 941 0 0 0 2 Step 1		940 0 0 0 3 941 0 0 0 2 Step 2	
• 0	pcode: 0x2		Memory	CPU Registers	Memory	CPU Registers
• 0	perand (Address): 0x941		301 5 9 4 1302 2 9 4 1	0 0 0 3 AC 5 9 4 1 IR	$\begin{array}{c} 300 & 1 & 9 & 4 & 0 \\ 301 & 5 & 9 & 4 & 1 \\ 302 & 2 & 9 & 4 & 1 \\ \end{array}$	0 0 0 5 AC 5 9 4 1 R
		. –	940 0 0 0 3 941 0 0 0 2		940 0 0 0 3 941 0 0 0 2	3+2=5
0 3		15	Step 3		Step 4	
0 0 1 0	1 0 0 1 0 1 0 0 0 0 0) 1	Memory 300 1 9 4 0 301 5 9 4 1	CPU Registers 3 0 2 PC 0 0 0 5 AC	Memory 300 1 9 4 0 301 5 9 4 1	CPU Registers 3 0 3 PC 0 0 0 5 AC
• PC: p	program counter		$\begin{array}{c} 302 \ \underline{2} \ \underline{9} \ \underline{4} \ \underline{1} \\ \underline{940} \ \underline{0} \ \underline{0} \ \underline{0} \ \underline{3} \\ 941 \ \underline{0} \ \underline{0} \ \underline{0} \ \underline{2} \end{array}$	▶ 2 9 4 1 IR	302 2 9 4 1 940 0 0 0 3 941 0 0 0 5 ◀	$\int \frac{2941}{1} \mathrm{IR}$
• AC: a	accumulator		Step 5		Step 6	

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

IR: instruction register

Instruction Cycle State Diagram

What is Pipeline?

• Laundry Example

- Ann, Brian, Cathy, Dave, each has one load of clothes to wash, dry, and fold
 - Washer takes 30 minutes
 - Dryer takes 40 minutes
 - Folding takes 20 minutes

Sequential Laundry

Pipelined Laundry: Start ASAP

()N

Pipelining

- Overlap the executions of multiple instructions
 - Fetch Instruction (FI)
 - Decode Instruction (DI)
 - Calculate Operands (CO)
 - Or Effective Address (EA)
 - Fetch Operands (FO)
 - Execute Instructions (EI)
 - Write Operand (WO)

Timing Diagram for Instruction Pipeline Operation

			Tim	e										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	со	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	CO	FO	EI	wo						
Instruction 4				FI	DI	со	FO	EI	wo					
Instruction 5					FI	DI	со	FO	EI	wo				
Instruction 6						FI	DI	со	FO	EI	wo			
Instruction 7							FI	DI	со	FO	EI	wo		
Instruction 8								FI	DI	со	FO	EI	wo	
Instruction 9									FI	DI	со	FO	EI	wo

ON

Pipeline Performance

• Speedup factor

- Assume...
 - An instruction takes k stages
 - Each stage takes 1 clock cycle
- *T*₁
 - Without pipeline, a program with *n* instructions will take *nk* cycles
- *T_k*
 - With a k-stage pipeline, only the first instruction takes k cycles and the rest of them take only 1 cycle
- Therefore...

$$S_k = \frac{T_1}{T_k} = \frac{nk}{k + (n-1)} \approx k$$

• Where $n \to \infty$

Pipeline Performance

Speedup Ratio Example

- A non-pipeline system takes 100ns to process a task
- The same task can be processed in a 5 segment pipeline into 20ns each
- Determine the speedup ratio of the pipeline for 1000 tasks?

$$S_k = \frac{T_1}{T_k} = \frac{nk}{k + (n-1)} = \frac{1000 * 5}{5 + (1000 - 1)}$$

= 4.98

Pipeline Hazards

- Pipeline Hazards
 - Caused when some portion (or all) of the pipeline must stall
 - a.k.a., "pipeline bubble"
- Types of hazards
 - Resource
 - Two (or more) instructions in pipeline need same resource
 - e.g., both instructions need multipliers
 - Data
 - Data dependency
 - e.g., one instruction needs the results from the previous one that has not been available yet
 - Control
 - The next instruction is not at PC+1
 - e.g., branch, procedure call, and return

Data Hazard Example

MIPS Assembly	1	2	3	4	5	6	7	8	9	10
add <mark>r16</mark> , r1, r2	FI	DI	FO	EI	WO					
sub r15, <mark>r16</mark> , r3		FI	DI	IDLE	IDLE	FO	EI	WO		
13			FI			DI	FO	EI	WO	
14						FI	DI	FO	EI	WO

- Read After Write (RAW) (True Dependency)
 - An instruction modifies a register or memory location
 - Succeeding instruction reads data in memory or register location
 - Hazard occurs if the read takes place before write operation is complete

Pipeline Principles

- The pipeline rate limited by slowest pipeline stage
- A pipeline is an operation of multiple tasks; run simultaneously
- Potential speedup = number of pipe stages (k)
- Sometimes, pipeline has to be stalled due to the pipeline hazard

