e CALIFORNIA STATE UNIVERSITY

d FULLERTON"

CPSC-440 Computer System Architecture

MATLAB Review

Matlab

* |s a numerical computing environment and 4t
generation programming language

* Developed by MathWorks, MATLAB allows
matrix manipulations, plotting of functions
and data, implementation of algorithms,
creation of user interfaces, and interfacing
with programs written in other languages,
including C, C++, Java, and Fortran

; :!‘.’ CALIFORNLA STATE UNMWERSITY)
“| FULLERTON

Free Matlab for Students

e Available at CSUF IT website:

— http://www.fullerton.edu/it/students/software/m

atlab/

;‘r‘:"‘-" CALIFORNIA STATE UNIVERSITY
RS e . 5
“| FULLERTON

http://www.fullerton.edu/it/students/software/matlab/

Matlab Default View

| o

@ Zearch Documentation

A\ MATLAB R2013a

= EI‘:II:I 0 [s &. E e New Varisbls L Analyzs Code BE| {6} Preferences @ (€3 Communty

Open Variable {7 Run and Time =* Request Support
Mew Mew Open lL_lCnmpare Import Save E“} e é‘F Layout ﬁ.’:‘vet%th Help — = s
Script v Dsta Workspace [Clear Workspace + [Clear Commands ~ = ~ CoAddOns «
FILE VARIABLE CODE ENVIRONMENT RESOURCES
€« A b C: b Users b jfaller ¥ Documents b MATLAB »
Current Folder [UM} Command Window [UN Workspace
Mame >> a2 =[12 346434 5] MName Value Min
AOS_Level Seg H [1234,64,34,5] 1
boostingDemo a =
drtoolbox
Fuzzy Hough Transform 1 2 3 4 6 4 3 4 5
Install Files
LabelMeToolbox Jx s>
pricols_ac

rtrmc9s12_CW_R2009b_002_006
Shared Funcs

sltoolbox_r101

spider

stprtool

ViolaJones_versionOb

g prtools_ac.zip

] I, 3

Command Histary)
IO — ICOHGET (IHW; T5E] 5

ind = find(h > 0);

~ind = ind - 1;

ind = reshape(ind,9,2)"':
~ReverbLowest

ReverbLow
~cle

RewverbMiddle

--ReverbHigh

--ReverbHighest

Details

Command Window

| o

o\ MATLAB R2013a

@ Zearch Documentation

= EI‘:II:I 0 [s &. E e New Varisbls L Analyzs Code BE| {6} Preferences @ (€3 Communty

Open Variable « ‘> Run and Time E:’Requﬁtsuppurl
Mew MNew Open |:=| compare Import Save & e Layout 5l Set Path Help —
Script v Dsta Workspace [Clear Workspace + [Clear Commands ~ = ~ CoAddOns «
FILE VARIABLE CODE ENVIRONMENT RESOURCES
— —
€« A b C: b Users b jfaller ¥ Documfints b MATLAB »
Current Folder [| Command Window [C] orkspace
MName >>a=[1234643435] ame Value Min
AQS Level Seg HH = [1.2.346434,5] 1
boostingDemo a =
drtoolbox
Fuzzy Hough Transform 1 2 3 4 6 4 3 4 5
Install Files
LabelMeToolbox Jx s>
pricols_ac

rtrmc9s12_CW_R2009b_002_006
Shared Funcs

sltoolbox_r101

spider

stprtool

ViolaJones_versionOb

g prtools_ac.zip

I, 3

ommand Histary)
InO — IESHEpT (IHU; T ET 5

ind = find(h > 0}:
~ind = ind - 1;

ind = reshape(ind,9,2)"':
~ReverbLowest

ReverbLow
~cle

RewverbMiddle

--ReverbHigh

--ReverbHighest

Details

Workspace Window

* Shows the variables
currently available to e [reconse
you e

aaaaaa

a- (123464348

--':J;'__‘I Lo .’-'I.ITEI_R SLA STATE UNIVERSITY)
ULLERTON

Command History Window

e Shows the commands

aaaaaa

you have entered 1= -
* Sorted by date

a- (1234643458

Current Folder Window

* Shows the folders for
the present working 1= o
directory =

aaaaaa

a- (123464348

--':J;'__‘I Lo .’-'I.ITEI_R SLA STATE UNIVERSITY)
ULLERTON

Present Working Directory

* Shows the current
folder you are working R
in i

* You can also use the
command “pwd”

a- (123464348

-,r‘al CALIFORNIA STATE UNIVERSITY
“| FULLERTON

Help Docs

Gl 65 0 Grmae [tewveme [Anayze Code T @ e (3 Bcomnsy

* Searchable help doc

P b C: b Users » jfaller » Desktop » - P
Current Folder Bl Command vindow Y workspace @
|| Name Value Min
: =1 023464345 1
¥ versus vecgbr X. If X ox ¥ 1s & matrix, b Basss6ssn 3
B Adobe Photoshop CS5.nk v fie zous ox cotumns of the m
. @ Audscitynk 2 veotor, di
BB Codearior DEInk eaiy ot
& MaASME2 Editornk
4\ MATLAB R2013a.k . e hained wic
3 Notpoteink colors may be cbrained with
e omyin de fzom one element
] Publich orPeish 3nk
S Snipping Toolink
& Tera Termink - soua ‘ 3
) Untite dotred
dashdor

VS Express for Desktopink

dashed
(none) o line

<
® pentagran example_17_1¢
n nexagram c2 = awB:

For example, plot(X,¥,'c+:') plots a cyan dotted line with a plus

5 data

[]

Details ~lE the (X,¥,S) triples, where the X's and ¥'s are vectors or matrices

BNLA STATE UNIVERS

FULLERTON"

d\ MATLAB R2013a

B L (] Find Files &. E

New w Open lgjcgmpare Import Save
-

Dsla ‘Workspace |, Clear Workspace ~

FILE VARIABLE CODE

Creating Scripts

@ Zearch Documentation

New Variable Analyze Code Community
e \—“? E {8} Preferences (.) A
E} Open Variable « &f Run and Time ':3 Request Support
Layout [* Set Path Help
(74 Clear Commands v = > C[AddOns v
ENVIRONMENT RESOURCES

| - e

ial » C ¥ Users b jfaller b Desktop b
Current Foldé ®

Narme

PDFs

il Adobe Dreamweaver Ink
[~dobe Photoshop CS6.In!
&b Audacity.Ink

l CodeWarrior IDE.Ink

=& desktop.ini

® Diadnk

Evernote.lnk

#- IfanView.Ink

AT | Tspice V.Ink

(& Masm3?2 Editor.ink

4\ MATLAB R2013a.Ink

g Notepad++.Ink

4 Octave 36.LInk

4 Publish or Perish 3.Ink

[% Snipping Toollnk

A Tera Term.Ink

#) Untitled.m

E] VS Express for Desktop.Ink

Details =3

b

Command Window

>> help plot
plot Linear plot.

plot (X,¥) plots vector ¥ versus vector X. If X or ¥ is a matrix,
then the vector is plotted wersus the rows or columns of the matrix,
whichewver line up. If X is a scalar and ¥ is a vector, disconnected
line objects are created and plotted as discrete points vertically at

X.

nlat(¥i niarta the anlnmna Af ¥ verana rtheir index.

plot.(real (Y),imag(¥)) .

Launches the script editor = ==

YELAUUS 4iuS LypSo, pausr Syussuas auu wuavudsS M2y be obtained with
plot (X,¥,3) where S5 is a character string made from one element
from any or all the following 3 columns:

b blue . point - solid
[=1 green o circle dotted
r red x x-mark - dashdot
[+ cyan + plus - dashed
m magenta = star (none) no line
b4 yellow -] sguare
k black d diamond
W white v triangle (down)

- triangle (up)

< triangle (left)

> triangle (right)

<3 pentagram

h hexagram

For example, plot(X,Y,'c+:'") plots a cyan dotted line with a plus

at each data point; plot(X,¥, 'bd') plots blue diamond at each data
point but does not draw any line.

pleot(X1,¥1,51,%X2,¥2,52,%X3,¥3,53,...) combines the plots defined by
the (X,¥,5) triples, where the X's and Y's are vectors or matrices

®

n

Workspace

MName Value Min
Ha [1234,64345]
Ho 124,56,86,56,7]

] I,

Command Histary

=
RewverbLow

~cle
ReverbMiddle

--ReverbHigh

ReverbHighest

~a=[12 346434 35]
~Untitled
--help plot

-

--help plot

Script Editor

* |nstead of entering in ey
the command window | =
directly, you can also e |
enter commands inthe | .=
script editor and save as
a m-file

k| CALIFORNIA STATE UNIVERSITY

ULLERTON"

Script Editor

EDTOR : ENR Rl =6
|:I‘:II:| - I:‘C_lemdF"as sert = fe MR D L.JE)) L@ (] Run section
|\l Compare « Comment % 52 L E:>|]GDTDV) =
New Open Save Breakpoints, Run nand Runand @Aﬂvanoe
- - - APt v Indent boz| [zeh | Find + - - Time Advance
FILE EDIT NAVIGATE | BREAKPOINT. RUN

Untitled™ = [
1 % Create a vector =
2 a=1[123464345];

3

4 % Add 2 to each entry of wector I
5 b=a+2

[

7 % Plot the vector

8 plot(b):

g
10 % Label the axis
11 xlabel ('Sample #'); ylabel('Pounds'};
12
13

Executes entire script

script ln 13 Col 1 I

Script Editor

-

H Editor - Ci\Users)jfaller\Desktop\Untitled.m = J
EDTOR PUBLISH BEHLE 96 006
ED:' 3 E [y FnaFies nsert = f T ES D &\? L@ [2] Run Section

| Compare ~ Comment % ‘sz i GoTo «
New Open Save = % s wl Breakpoints Run Runand Runand =l Advance
! - - - Pt v Indent =B iy Find = - - Time Advance I
| FILE EDIT NAVIGATE | BREAKFOINTS RUN

Untitledm =

1

2 —

3

4

zl=

[

7 % Plot the vector
8 - plot(b):

g

10 % Label the axis
alil|= xlabel('Sample #'):; ylabel('Pounds"});
12

13

Or you can select a portion
of the script and execute it only
by pressing F9

script Ln 5 Col 11 i

IHIVERSITY

Getting Started

>a=[12;21] Example

— Define a matrix “a” and
computed its square

a= — “atimesa”
12 Textin bold is what you
2 1 type in the command
window
>> a*a * Ordinary text is what
Matlab outputs
ans =
5 4
4 5

Matrices

 To enter the matrix:

[1

3

* and storeitin a variable “a”, do this:
>>a=[12;34];

* To redisplay the matrix, just type its name:
>> 3

* Once you know how to enter and display matrices, it is
easy to compute with them. First we will square the

“w_ .,

matrix “a

>>a*a

Matrices

* Now we'll try something a little harder. First
we define a matrix b:

>>b=[12;01];
* Then we compute the product ab:
>> a*b
* Finally, we compute the product in the other
order:
>> b*a

; ‘:!‘__‘ Lo .’-'!.ITJIIR!'-.'I;‘. STATE UNIVERSITY)
“| FULLERTON

Matrices

* Notice that the two products are different

— Matrix multiplication is non-commmutative
 Of course, we can also add matrices:
>>a+b

e Now let's store the result of this addition so
that we can use it later:

>s=a+b

Matrices

* Matrices can sometimes be inverted:
>> inv(s)
* To check that this is correct, we compute the product of s
and its inverse:
>> s * jnv(s)
 The resultis the unit, or identity matrix. We can also write
the computation as
>> sfs
 We can also write
>> s\s
* which is the same as
>> inv(s) * s

- ‘::‘__‘ F'. .’-'!.IT*IIR!'-.'I;‘. STATE UNIVERSITY)
“| FULLERTON

Matrices

* To see that these operations, left and right division, are
really different, we do the following:

>>a/b
>>a\b

* Not all matrices can be inverted, or used as the
denominator in matrix division:

>c=[11;11];
>> inv(c);

A matrix can be inverted if and only if its determinant is
nonzero:

>> det(a)
>> det(c)

- ‘::‘__‘ F'. .’-'!.IT*IIR!'-.'I;‘. STATE UNIVERSITY)
“| FULLERTON

Systems of Equations

* Now consider a linear equation

ax+by=p
cx+dy=q
* We can write this more compactly as
AX=B
* where the coefficient matrix A is
ab
cd
* the vector of unknowns is
X
Yy
* and the vector on the right-hand side is
P
q

* If Aisinvertible, X = (1/A)B, or, using Matlab notation, X = A\B. Let’s try this out by solving ax = b
with a as before and b =[1; 0]. Note that b is a column vector.

>b=[1;0]
>>a\b

LIFORNIA STATE UNIVERSITY

ULLERTON"

Loops

* Loop Example

We regard x as representing (for example) the population state of an island

The first entry (1) gives the fraction of the population in the west half of the
island, the second entry (0) give the fraction in the east half

The state of the population T units of time later is given by the rule y = ax

This expresses the fact that an individual in the west half stays put with
probability 0.8 and moves east with probability 0.2 (note 0.8 + 0.2 = 1), and
the fact that in individual in the east stays put with probability 0.9 and moves
west with probability 0.1

Thus, successive population states can be predicted/computed by repeated
matrix multiplication

>>a=[0.80.1;0.20.9]
>x=[1;0]
>> fori=1:20, x = a*x, end

ALIFORNTA STATE UNMVERSITY

ULLERTON"

Graphing

Functions of One Variable NGWe[h|a\0DE 3 00 80
 To make a graph of y = sin(t) on the |
interval t=0to t =10 we do the nal
following: 08|
>>t=0:.3:10; 047
>>y =sin(t); =l
>> plot(t,y) DZ
* The commandt=0:.3:10; defines a aul
vector with components ranging i
from 0 to 10 in steps of 0.3 wel
* They =sin(t); defines a vector al— -
whose components are sin(0),

sin(0.3), sin(0.6), etc.

* Finally, plot(t,y) use the vector of t
and y values to construct the graph

45

"ALIFOBNLA STATE UNIVERSITY

“| FULLERTON"

Graphing

B Figure 1 iy | ﬁ
Eile Edit Wiew Insert Tools Desktop Window Help k]

Functions of Two Variable NEHde L AU DEL- B 0B 8D

 Here is how we graph the function
a2 _ a2
z(x,y) = xe(7" 7Y%
>> [x,y] = meshgrid(-2:.2:2, -2:.2:2);
>>z=X.* exp(-x./2 - y.A2);
>> surf(x,y,z)

* The first command creates a matrix
whose entries are the points of a grid in
the square -2 <=x<=2,-2<=y<=2

* The small squares which make up the
grid are 0.2 units wide and 0.2 unit tall

* The second command creates a matrix
whose entries are the values of the
function z(x,y) at the grid points

* The third command uses this
information to construct the graph

IFORNIA STATE UNIVERSITY

| FULLERTON"

Common Commands and Operators

e http://www.hkn.umn.edu/resources/files/mat
lab/MatlabCommands.pdf

;1.-‘: CALIFORNIA STATE UNIVERSITY
“| FULLERTON

http://www.hkn.umn.edu/resources/files/matlab/MatlabCommands.pdf

Useful Tutorials

* Download MATLAB and do the following
tutorials:

— Basic Matric Operations

— Getting Started with MATLAB

— Matlab Overview Video

— Analyzing and Visualizing Data with MATLAB

— Programming and Developing Algorithms with MATLAB

— Signal Related Videos

http://www.mathworks.com/help/matlab/examples/basic-matrix-operations.html?prodcode=ML
http://www.mathworks.com/help/matlab/getting-started-with-matlab.html
http://www.mathworks.com/videos/matlab-overview-61923.html
http://www.mathworks.com/videos/analyzing-and-visualizing-data-with-matlab-70942.html
http://www.mathworks.com/videos/programming-and-developing-algorithms-with-matlab-71067.html
http://www.mathworks.com/solutions/mixed-signal-systems/devices.html

o CALIFORNIA STATE UNIVERSITY

i FULLERTON

CPSC-440 Computer System Architecture

Lecture 1

Introduction

Introduction

% FULLERTON

Computer Architecture
Computer Organization

eInstruction set, number
of bits used to represent
various data types, 1/O

(- Attributes of a
system visible to the

rogrammer - .
prog _ . mechanisms, techniques
e Have a dlrgct impact for addressing memory
on the logical
execution of a

program Architectural
- Computer i |.ec o .
_ attributes
Architecture :
include:
'S y /
Organ!zatlonal Computer
attributes Organization
e include: & |

eHardware details
transparent to the
programmer, control
signals, interfaces
between the computer
and peripherals, memory
\technology used

¢ The operational
units and their
interconnections
that realize the
architectural
specifications)

e

CALIFORNIA STATE UNIVERSITY

e

JFULLERTON

Structure and Function

* Hierarchical system e Structure
e Set of interrelated * The way in which
subsystems components relate to each

e Hierarchical nature of other

complex systems is essential * Function

to both their design and * The operation of individual
their description components as part of the

_ structure
* Designer needs to only deal
with a particular level of the
system at a time

e Concerned with structure and
function at each level

\ CALIFORNIA STATE UNIVERSITY
% FULLERTON

Operating Environment
(source and destination of data)

Function
A computer can perform Data
four basic functions: K‘:;:;';fz

Data processing

Data storage
Data movement

Control

Control
Mechanism

Data
Storage
Facility

Data
Processing
Facility

Figure 1.1 A Functional View of the Computer

S8 | CALIFORNIA STATE VERSITY

FULLERTON

Movement
A

Operations

(a)

Data Movement

(a)

Figure 1.2 Possible Computer Operations

FORNIA STATE UNIVERSITY

FULLERTQN

Operations

(b)
Data Storage

FORNIA STATE UNIVERSITY

FULLERTQN

Movement
A

Control

Storage Processing

(b)

Figure 1.2 Possible Computer Operations

Operations

\9

Data Processing

FORNIA STATE UNIVERSITY

FULLERTQN

Movement

Control

Storage Processing

(c)

Figure 1.2 Possible Computer Operations

Operations

)

Data Processing

FORNIA STATE UNIVERSITY

FULLERTQN

Movement

Control

Storage Processing

(d)

Figure 1.2 Possible Computer Operations

The Computer

&
¥ %,
QQ:
{,.
%,

COMPUTER

*Storage
*Processing

Figure 1.3 The Computer

| CALIFORNIA STATE UNIVERSITY

FULLERTON

‘'OMPUTER

Structure

-
u’-'
-'--
--.'
....
-

CONTROL
UNIT

Figure 1.4 A Top-Down View of a Computer

L et

==

There are four main
structural
components

of the computer:

o ~ | CALIFORNIA STATE UNIVERSITY

¥ FULLERTON

CPU

e Controls the operation of the
computer and performs its
data processing functions

Main Memory
e Stores data

/0

 Moves data between the
computer and its external
environment

System Interconnection

 Some mechanism that
provides for communication

among CPU, main memory,
and I/O

==

CPU

Major structural
components:

o CALIFORNIA STATE UNIVERSITY

o

FULLERTON

e Control Unit

e Controls the operation of the
CPU and hence the computer

e Arithmetic and Logic Unit
(ALU)

* Performs the computer’s data
processing function

* Registers

* Provide storage internal to the
CPU

e CPU Interconnection

 Some mechanism that
provides for communication
among the control unit, ALU,
and registers

Questions

. What, in general terms, is the distinction between computer organization
and computer architecture?

. What, in general terms, is the distinction between computer structure and
computer function?

. What are the four main functions of a computer?
. List and briefly define the main structural components of a computer.

. List and briefly define the main structural components of a processor.

| CALIFORNIA STATE UNIVERSITY

FULLERTON

HW 1

e Problems1to5

« HW template with problems will be available
on Canvas

_' CALIFORNIA STATE UNIVERSITY
FULLERTON

—

vy CALIFORNIA STATE UNIVERSITY

by array
“SAR-] P d
i ¥ =

d FULLERTON

CPSC-440 Computer System Architecture

Lecture 2

Performance Assessment

Performance

e What we care most about...
* How fast the computer can run a program

* Response time or throughput
* Response time: time to finish one single program
* Throughput: total amount of work done in unit time

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

CPU Performance Equation

e CPUTime

Clock cycles for a nprogram (cycles
CPU Time — ycles for aprog (cycles)

Clock Freq (cycles/sec)

* |f we know...
* Total Instruction Counts (I,)
e Cycles Per Instruction (CPI)
* Clock Frequency (f)
* Cycle Time (1) - the inverse of the clock frequency (1/f)
e CPUTime (T):
I. X CPI
T =

f

=[.XCPI X1

i o | CALIFORNIA STATE UNIVERSITY

FULLERTON

What if different instructions have
different CPls?

T = (;(lix cpm) T

* Where i is the instruction type

* CPI

e CPUTime

i=1(Iix CPI;)
Ic
* |PC (Instructions Per Cycle)
* Inverse of CPI

CPIl =

% | CALIFORNIA STATE UNIVERSITY

| FULLERTON

MIPS and MFLOPS Rates

 MIPS (Millions of Instructions Per Second)
Rate

le — f
T x 10 CPI x 10°
e MFLOPS (Millions of Floating Point Operations

Per Second) Rate

MFLOPS Rate
_#o f executed floating point operations in a program

MIPS Rate =

Execution time X 10°

e

Example

e 2 million instructions on a 400 MHz processor
* 4 major types of instructions

e What’s the MIPS rate?
CPI =064+ (2x%x0.18)+ (4x0.12)+ (8% 0.1) = 2.24
MIPS Rate = (400 x 10°)/(2.24 x 10°) ~ 178

Instruction Type CPI; I; (%)

Arithmetic and Logic 1 60
Load/Store with Cache Hit 2 18
Branch 4 12
Memory Reference with Cache Miss 8 10

R | CALIFORNIA STATE UNIVERSITY

** FULLERTON

Improve CPU time

* |nstruction count
* ISA and compiler technology

 CPI
* Organization and ISA

* Clock cycle time
* Hardware technology and organization

% | CALIFORNIA STATE UNIVERSITY

| FULLERTON

Benchmarks

 MIPS and MFLOPS rates are inadequate to
evaluate performance of processors
* Because of differences in instruction sets, these

rates are not valid means of comparing the
performance of different architectures

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

Example

A=B+C
Assume all quantities in main memory
Complex Instruction Set Reduced Instruction Set
Computer (CISC) Computer (RISC)
 Can be compiled into one e Rated at 4 MIPS
instruction load mem(B), reg(1)
e Rated at 1 MIPS load mem(C), reg(2)
add mem(B), mem(C), mem(A) add reg(1), reg(2), reg(3)

store reg(3), mem(A)

R | CALIFORNIA STATE UNIVERSITY

** FULLERTON

Standard Performance Evaluation Corporation (SPEC)
Benchmark

 Benchmark Suite
* Collection of programs

* Provides a representative test of a computer in a
particular application or area

i o | CALIFORNIA STATE UNIVERSITY

FULLERTON

Performance Comparison

Which One is Faster?

A is 10x faster than B for Prog P1
B is 10x faster than A for Prog P2
A is 20x faster than C for Prog P1
C is 50x faster than A for Prog P2
B is 2x faster than C for Prog P1
C is 5x faster than B for Prog P2

*"-‘l "ALIFORMIA STATE UNIVERSITY

¥ FULLERTON

Total Execution Rates

 Both program A and B have equal number of instructions
* Below shows the execution rates

I = S T

Program A
Program B 1000 100 20
Total 1001 110 40

*"-‘l "ALIFORMIA STATE UNIVERSITY

¥ FULLERTON

Average Execution Rate

* What if Program A and B have a different number
of instructions?

* |f there are m different benchmark programs

m

R —1ZR

A—m. l
=1

* Where R; is the high-level language instruction
execution rate for the i*" benchmark program

* The throughput of a machine carrying out a
number of tasks
* The higher the rate (R,) the better

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

Harmonic Mean

Alternative to average execution rate

P m
H — - l
i=1R.
The reciprocal of the arithmetic mean of the
reciprocals

Gives the inverse of the average execution
rate

Again, the higher the rate (Ry) the better

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

Total Execution Time Example

The top table shows the execution rates. Assume each program has equal weight.

I = S = T

Program 1

Program 2 0.1 1 5

Program 3 0.2 0.1 2

Program 4 1 0.125 1
——m—m

Computer A 25.325 0.25

Computer B 2.8 3 0.21 3

Computer C 3.25 2 2.1 1

*"-‘l "ALIFORMIA STATE UNIVERSITY

¥ FULLERTON

SPEC Benchmark
Speed Metrics

* Measures the ability of a computer to

complete a single task
Tref;

B Tsut;

* Tref; - execution time of benchmark program i on
the reference system

* Tsut; - execution time of benchmark program i on
the system under test

 The larger the ratio, the higher the speed

T;

% | CALIFORNIA STATE UNIVERSITY

| FULLERTON

SPEC Benchmark
Speed Metrics

 Example
* A system executes a program in 934 sec.

* The reference implementation requires
22,135 sec.
22,135 sec

= 23.7
934 sec

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

SPEC Benchmark
Rate Metric

* Throughput/rate of a machine carrying out a
number of tasks

* Multiple copies of benchmarks run
simultaneously

N X Tref;
r; =
‘ Tsut;

* N —number of copies of the program that are run
simultaneously

% | CALIFORNIA STATE UNIVERSITY

FULLERTON

SPEC Benchmark

Geometric Mean

* Averages ratios for all 12 integer benchmarks
* Used to determine the overall performance measure

n

1/n

=1

(17.5 x 14 x 13.7 X 17.6 X 14.7 X 18.6 x 17 x 31.3 x 23.7 X 9.23 x 10.9 x 14.7)1/12 = 18.5

7 d"'f' CALIFORNIA STATE UNIVERSITY

1| FULLERTON

Amdahl’s Law

* Speedup in one aspect of technology/design
does not result in a corresponding improvement
in performance

Execution time before enhancement

Sveedup = . :
p P Execution time after enhancement

: o | CALIFORNIA STATE UNIVERSITY

FULLERTON

Amdahl’s Law Example

* Single vs. Multiple processors
X TA-H)+Tf B 1

Speedup = = = =
ra-H+ a-p+k

X: Time to execute a program on a single processor
Y: Time to execute a program on N parallel processors
T: Total execution time

f: Fraction of code executed on parallel processors (no scheduling
overhead)

(1 — f): Fraction of code executed on a single processor

1. When f is small, the use of parallel processors has little effect
2. AsN — oo, speedup bound by 1/(1 — f)

* Diminishing returns for using more processors

2 | CALIFORNIA STATE UNIVERSITY

FULLERTON

Amdahl’s Law Example

20 -
f=0.95

15 =
=1
% B

f=0.90

Q -
a 10
n

Number of Processors

% | CALIFORNIA STATE UNIVERSITY

' FULLERTON

rious CALIFORNIA STATE UNIVERSITY

i FULLERTON

CPSC-440 Computer System Architecture

Lecture 3
Von Neumann Machines (IAS)

History of Computers
First Generation: Vacuum Tubes

* ENIAC
e Electronic Numerical Integrator And Computer

* Designed and constructed at the University of
Pennsylvania
e Started in 1943 — completed in 1946
* By John Mauchly and John Eckert

* World'’s first general purpose electronic digital
computer

* Army’s Ballistics Research Laboratory (BRL) needed a
way to supply trajectory tables for new weapons
accurately and within a reasonable time frame

* Was not finished in time to be used in the war effort
e |ts first task was to perform a series of calculations
that were used to help determine the feasibility of
the hydrogen bomb

e Continued to operate under BRL management until
1955 when it was disassembled

§ ! CALIFORNIA STATE UNIVERSITY

** FULLERTON

SV

Occupied
1500
Weighed square
30 feet
tons of
floor

space

Contained
more
than

18,000
vacuum

tubes

S | CALIFORNIA STATE UNIVERSITY

% FULLERTON

140 kW
Power

consumption

Capable
of;
5000
additions
per.

second

Decimal
rather
than
binary
machine

VMiemory.
consisted

of 20
accumulators,

each
capable
of.
holding
a
10 digit
number.

Major

drawback

was the need

for manual
programming
by setting
switches
and
plugging/

unplugging
cables

ENIAC

..\.
=
7
o
>
ya
=
|99
=
-
=
v
<
p
o
-
e
=
e
&

Z
=
a4
(]
—
—
=,
73

John von Neumann
EDVAC (Electronic Discrete Variable Computer)

* First publication of the idea was in 1945

» Stored program concept

e Attributed to ENIAC designers, most notably the
mathematician John von Neumann

* Program represented in a form suitable for storing in
memory alongside the data

* |AS computer
* Princeton Institute for Advanced Studies

* Prototype of all subsequent general-purpose
computers

* Completedin 1952

| CALIFORNIA STATE UNIVERSITY

FULLERTON

Structure of von Neumann Machine

Central Processing Unit (CPU)

Vi E
4 7
; »| Arithmetic-
: Logic
- Unit (CA) .
Main | : 10
Memory : : Equip-
(M) E ; ment
. [
: -—:—’
—>| Program :
: Control '
— Unit (CC) |
: V : |V
|4 : :

Figure 2.1 Structure of the IAS Computer

| CALIFORNIA STATE UNIVERSITY
FULLERTON

|IAS Memory Formats

e The memory of the IAS * Both data and instructions
consists of 1000 storage are stored there
locations (called words) of .

Numbers are represented in
binary form and each
instruction is a binary code

40 bits each

0 1
sign bit (a) Number word
left instruction right instruction
— i —— — B
0 8 20 28 39
~ ~ - ~ - ~ i ~ -
opcode address opcode address

(b) Instruction word

Figure 2.2 IAS Memory Formats

% CALIFORNIA STATE UNIVERSITY

==/ FULLERTON

Structure of IAS Computer

e |~ e e s rcrcrr e r e """ --
Reg|Ste rs Arithmetic-logic unit (ALU)

 Memory Buffer Register (MBR)

' :
| :
, '
|}
. . l
* Word to be stored/received in/from memory or ' \ Input-
| /O unit : Arithmetic-logic ' output
' :
| :
, '
' |}
' |}
')

circuits .
« Memory Address Register (MAR) equipment

* Memory Address of the word to be (written
from)/(read into) the MBR

Instruction Register (IR) Leoo.o.-. 0 I R) .
* Contains 8-bit opcode Instructions
Instruction Buffer Register (IBR) and data
* Temporarily holds the right-hand instruction

 Program Counter (PC)

MBR

1 1
1 1
1 1
: IBR PC :
* Contains address of the next instruction pair to be ; '

fetched from memory : — : Main
. . . I I

 Accumulator (AC) and Multiplier Quotient ! IR MAR ; memory
(MQ) : :
* Employed to temporarily hold operands and X . X
results of ALU operations ! Control [T%. !
. circuits : signals T

: .
1 1

Program control unit

L et

Symbolic

Instruction Type Opcode Representation Description
00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC
00001001 LOAD MQ M(X) Transfer contents of memory location X to
MQ
00100001 STOR M(X) Transfer contents of accumulator to memory
Data transfer location X
00000001 LOAD M(X) Transfer M(X) to the accumulator
00000010 LOAD -M(X) Transfer -M(X) to the accumulator
00000011 LOAD IM(X)I Transfer absolute value of M(X) to the
accumulator
00000100 LOAD -IM(X)I Transfer -IM(X)I to the accumulator
Unconditional 00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)
branch 00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)
00001111 JUMP+ M(X,0:19) If number in the accumulator is nonnegative,
.. take next instruction from left half of M(X)
Conditional branch) . .
00010000 JUMP+ M(X,20:39) If number in the accumulator is nonnegative,
take next instruction from right half of M(X)
00000101 ADD M(X) Add M(X) to AC; put the result in AC
00000111 ADD IM(X)I Add IM(X)I to AC; put the result in AC
00000110 SUB M(X) Subtract M(X) from AC; put the result in AC
00001000 SUB IM(X)! Subtract IM(X)!| from AC; put the remainder
in AC
00001011 MUL M(X) Multiply M(X) by MQ; put most significant
Arithmetic pits of result in AC, put least significant bits
in MQ
00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC
00010100 LSH Multiply accumulator by 2; i.e., shift left one
bit position
00010101 RSH Divide accumulator by 2; i.e., shift right one
position
00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
Address modify rightmost.bits of AC ‘
00010011 STOR M(X,28:39) Replace right address field at M(X) by 12

rightmost bits of AC

Table 2.1: The IAS Instruction Set

CALIFORNIA STATE UNIVERSITY

FULLERTON

Table 2.1

The IAS

Instruction
Set

Example 1

e What would the machine code instruction

look like to adc
address 5CD (H

stores the resu

Left Ins’fruction

the contents of memory

EX) with the accumulator and
t back into the accumulator?

Right Inftruction

[

| |

0 8 20 28 39
0000 0101 0101 1100 1101 XXXX XXXX XXXX XXXX XXXX
\ \ \ \ l
Y Y Y Y
Opcode Address Opcode Address
ADD M(X) Add M(X) to AC; put the result in AC

| CALIFORNIA STATE UNIVERSITY

FULLERTON

Example 1

A
Yes Is next No
instruction MAR+—PC . . .
Fetch INo memory in IBR? Left InStrUCtIOn f| rSt
; access V
cvcle .
required MBR “~M(MAR)
e it
- X Arithmetic-logic unit (ALU) 1
1
]
1
— N . 1 =
IR —IBR (0:7) IR —MBR (20:27) Tl 'Bl'; ’;‘::3:‘::’-59’ \ I“I fo— iw] |
y -— . | P - : . =M . 1
MAR-—IBR (8:19) MAR ~— MBR (28:39) required? MAR - MBR (8:19) . : T
' Arithmetic-logic ' output
: circuits [.
o » equipment
L]
' 1
\ 4 ' X
)) ! | MBR | 1
PC—PC+1 : X
1
!
v Decode instructioninIR) mesm-e--- F1-l~"f~~~=~~~- !
i AC~— M(X) Go to M(X, 0:19) IfAC > 0 then AC+—AC+M(X) Instructions
go to M(X, 0:19 and data
> : "]
Execution IsAC>0? ! 1
cycle 1 1
¥ \ . 2 : IBR | PC :
MBR < M(MAR) PC—MAR MBR ~—~M(MAR) : :
| y : — : Main
: IR | M "\ﬂ : mc:llory
AC+—MBR AC+—AC + MBR ! 1
x 1 1
1 1
1 . 1
- Yoo N J Yy Y : Lannn '_°’(‘omrol :
Ll ' circuits : signals | A ddresses
' L . Addresses
M(X) = contents of memory location whose address is X ' e
1 Program control unit 1

(i:j) = bits i through j

Figure 2.4 Partial Flowchart of IAS Operation

% CALIFORNIA STATE UNIVERSITY

** FULLERTON

‘ Start ’

A

Yes Is next No
instruction MAR+—PC
. {0 memory in IBR?
F e“;h access +
cycle :
required MBR “~M(MAR)
IR —IBR (0:7) IR —MBR (20:27) instruction “?;:’;;';:ﬁ:f;?’
MAR-—IBR (8:19)| |MAR —MBR (28:39) required? MAR-~—MER (8:19)
PC—PC +1 399
v Decode instruction in IR
R AC—MX) Go to M(X, 0:19) If AC > 0 then AC—AC + M(X)
go to M(X, 0:19
Execution ISAC > 07
cycle
\ 4 A Y
MBR « M(MAR}) PC~—MAR MBR “—M(MAR)
y ¥
AC-—MBR AC+—AC + MBR
R 2 R . 4 . 4 ¥

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

Figure 2.4 Partial Flowchart of IAS Operation

CALIFORNIA STATE UNIVERSITY

FULLERTON

Examp

le 1

The execution path would
depend on the right instruction

1
Arithmetic-logic unit (ALU) '
'
'
AC J—— M@ |
B oo
'
' Input-
Arithmetic-logic ' output
circuits 1 N
' equipment
'
'
'
| MBR | 1
'
'
-------- e 4 ---i—-------l
Instructions

and data

!

Control

circuits Control

« signals

Main
memory
M

Addresses

2]
R
IR J
=]
i

Program control unit

Example 2

 What is the assembly language code for the

program:
Left Ins’fruction Right Inkstruction
(Y \
0 8 20 28 39
0010 0001 1100 01101111 0001 0100 XXXX XXXX XXXX
\ \ X \ l
Y Y Y Y
Opcode Address Opcode Address
Machine Code
06B 21C6F14XXX

NOTE: IAS doesn’t actually have an assembly language

‘ CALIFORNIA STATE UNIVERSITY
% FULLERTON

Example 2

 What is the assembly language code for the

program:
Left Ins’fruction Right Inkstruction
(Y \
0 8 20 28 39
0010 0001 110001101111 0001 0100 XXXX XXXX XXXX
\ \ X \ l
Y Y Y Y
Opcode Address Opcode Address
Machine Code
06B 21C6F14XXX
06B STOR M(C6F)

g CALIFORNI
e LSH
%

Example 3

* Write an IAS program to compute the results

of the following equation:
N(N + 1)

2
* Assume that the result of the computation

doesn’t overflow and N is a positive integer

Y =

B T ERTON

Example 3 N+

2

lnstructnonIValue

Constant (N) [initialized to some value]
1 Constant; Integer value = 1

_ 2 Constant; Integer value = 2

_ 0 Variable Y (initialized to integer zero)
_ 0 Variable X (initialized to integer zero)

ER LoAD M(0) N > AC

ADD M(1) AC+1 - AC; (N+1)

STOR M(4) AC > X; X=N+1

[LoAD MQ,M(4) X-> MQ; MQ=N+1

MUL M(0) MQ*M(0) = N(N+1) = AC

DIV M(2) AC/2 - AC; AC=N(N+1)/2

STOR M(3) AC - Y; saving the Sum in variable Y
JUMP M(8,20:39) Jump to 8R; Done

E CALIFORNIA STATE UNIVERSITY
 FULLERTON

Example 4

* Write an IAS program to compute the results
of the following equation:

N
Y=2X
X=1

* Assume that the result of the computation
doesn’t overflow, and that X, Y, and N are
positive integers

B T ERTON

Example 4 =3

X=1
I <> Constant (N) [initialized to some value]
1 Constant (loop counter increment)
2 K Variable i (loop index value; current)
- 1 Variable Y = Sum of X values (Initialized to
One)

_ LOAD M(0) N = AC (the max limit)
SUB M(2) Compute N-i - AC

E_JUMP+M(6 20:39) If AC> 0 [i < N] then jump to 6R
R JumP M(6,0:19) Loop here (HALT)

_ LOAD M(2) i<N so continue; Get loop counter i
F/EE ADD M(1) i+1 in AC

_ STOR M(2) AC > i

ADD M(3) i +Yin AC

E_ STOR M(3) AC > Y

EIR JUMP M(5,0:19) Jump to 5L

Homework Problems

* Problems are available on Canvas

B T ERTON

Study Guide Exam #1 — CS 440 Computer Architecture

Jared Dyreson
California State University, Fullerton

February 24, 2021

Contents

1 Lecture 00 2
1.1 Matrices o o o e e e e e e e 2

2 Lecture 01 3

3 Lecture 02 4
3.1 Benchmark Types e 4
3.2 Amdahl'sLaw. 5

4 Lecture 03 5

1 Lecture 00

1.1 Matrices

Example Usage

[12; 21]
2
1

o o~

a
%
%

a *x a

5 4
5

RN X
NG

1. Matrix multiplication is not commutative

2. Inverse function is the same as division

3. Cannot invert all matrices (only with determinant not equal to 0)
4. System of equations can be solved

5. Ranges follow this pattern “begin:step:end”

6. Steps can be any decimal value

2 Lecture 01

1. Difference between architecture and organization

e Architecture: Specifications of the system being built, which are a set of rules/meth-
ods. These describe the functionality, organization and implementation of computer
systems.

e Organization: Deals with the hardware components of a computer system, which
include I/0O devices, the CPU, storage and primary memory devices (RAM).

2. Four structural components for computer:

e CPU
e Volatile Memory (RAM)
e 1/0

System Interconnections

3. Four structural components for computer:

e Control Unit (CU)
e Arithmetic Logic Unit (ALU)
e Registers

e CPU Interconnections

Lecture 02

. Performance Assessment

e Qualitative: relating to the possession of qualities without reference to the quan-
tities involved

e Quantitative: relating to a measurable and numeric representation of a given entity
(this is how we gauge the performance of a chipset)

CPU Time: Zlock cycles for a program (cy cles) The amount of time it takes for a CPU to
Clock Frequency (cycles/sec)

complete a given set of instructions.

CPI: Cycles Per Instruction

IPC: Instructions Per Cycle (inverse of CPI)

MIPS: Million(s) of Instructions per Second

MFLOPS: Million(s) of Floating Point Operations Per Second

For benchmarks however, this will not suffice as it is hard to see which machine is faster

Benchmark Types

. Total Execution Rate: If Program A and B have equal amount of instructions, you

can sum them up individually

. Average Execution Rate: When Program A and B have an unequal amount of in-

structions

Harmonic Mean: The reciprocal of the arithmetic mean of the reciprocals. Alternative
to average execution rate.

SPEC Benchmark: Measures the ability of a computer to complete a single task.

- Trefi
© Tsut;

i

e Tref; - execution time of benchmark program i on the reference system
e Tsut; - execution time of benchmark program 4 on the system under test

e The larger the ratio, the higher the speed

3.2 Amdahl’s Law

Adding more processors does not make the program execution time improve.

Execution time before enhancement

Speedup =
P P Execution time after enhancement

Good Video Explanation

The more of the code that is running on multiple processors, it will speed up, but it will
become saturated.

4 Lecture 03

1. ENTAC does not use binary number

2. Binary only has 1’s and 0’s

3. Can utilize left /right bit shifts (dividing/multiplying by 2), boolean executions
4. You can’t use this with decimal numbers (base 10)

5. It never had any memory, so programs could not be stored

6. Von Neumann machines has same four components of computer

7. TAS Memory formats, which hold 40 bits and both instructions/data are stored

e Left Hand Side
Opcode: 0-7
Address: 8 - 19

e Right Hand Side
Opcode: 20 - 27

e Address: 28 - 39

https://www.youtube.com/watch?v=WdRiZEwBhsM

RegiSte rs I Arithmetic-logic unit (ALU)

* Memory Buffer Register (MBR)

[:
! L]
1
: i
* Word to be stored/received in/from memory or | X Input-
/O unit | Arimetis dogte : output
i :
! L]
1
: i
!]
1

* Memory Address Register (MAR) equipment

* Memory Address of the word to be (written
from)/(read into) the MBR

* Instruction Register (IR) ~ Leaaao.. O I N |
* Contains 8-bit opcode Instructions
* Instruction Buffer Register (IBR) and data
* Temporarily holds the right-hand instruction

* Program Counter (PC)
* Contains address of the next instruction pair to be

fetched from memory S
* Accumulator (AC) and Multiplier Quotient e

(MQ)
* Employed to temporarily hold operands and
results of ALU operations

H

Control
circuits

: Control
= signals
—

5|
L']
E-_

Program control unit

	CPSC 440 - Test 01
	CPSC 440 - Lecture 00 Matlab
	PRESENTATION TITLE
	Matlab
	Free Matlab for Students
	Matlab Default View
	Command Window
	Workspace Window
	Command History Window
	Current Folder Window
	Present Working Directory
	Help Docs
	Creating Scripts
	Script Editor
	Script Editor
	Script Editor
	Getting Started
	Matrices
	Matrices
	Matrices
	Matrices
	Matrices
	Systems of Equations
	Loops
	Graphing
	Graphing
	Common Commands and Operators
	Useful Tutorials

	CPSC 440 - Lecture 01
	CPSC 440 - Lecture 02
	CPSC-440 Computer System Architecture
	Performance
	CPU Performance Equation
	What if different instructions have �different CPIs?
	MIPS and MFLOPS Rates
	Example
	Improve CPU time
	Benchmarks
	Example
	Standard Performance Evaluation Corporation (SPEC) Benchmark
	Performance Comparison
	Total Execution Rates
	Average Execution Rate
	Harmonic Mean
	Total Execution Time Example
	SPEC Benchmark�Speed Metrics
	SPEC Benchmark�Speed Metrics
	SPEC Benchmark�Rate Metric
	SPEC Benchmark�Geometric Mean
	Amdahl’s Law
	Amdahl’s Law Example
	Amdahl’s Law Example

	CPSC 440 - Lecture 03

	Study_Guide
	Lecture 00
	Matrices

	Lecture 01
	Lecture 02
	Benchmark Types
	Amdahl's Law

	Lecture 03

