iBoot/drivers/apple/amc/amc_v2.c

661 lines
21 KiB
C
Raw Permalink Normal View History

2023-07-08 13:03:17 -07:00
/*
* Copyright (C) 2013-2014 Apple Inc. All rights reserved.
*
* This document is the property of Apple Inc.
* It is considered confidential and proprietary.
*
* This document may not be reproduced or transmitted in any form,
* in whole or in part, without the express written permission of
* Apple Inc.
*/
#include <debug.h>
#include <drivers/amc/amc.h>
#include <drivers/amc/amc_phy.h>
#include <drivers/amc/amc_regs.h>
#include <drivers/dram.h>
#include <drivers/miu.h>
#include <lib/env.h>
#include <platform.h>
#include <platform/soc/hwclocks.h>
#include <platform/chipid.h>
#include <platform/memmap.h>
#include <platform/timer.h>
#include <sys.h>
#include <string.h>
#include <target.h>
// if there are separate ap/dev parameters, amc_init will copy
// the appropriate ones here
#if AMC_PARAMS_AP_DEV
static struct amc_param amc_params;
#endif
static bool amc_params_initialized;
static const struct amc_channel_addrs {
volatile uint32_t *rnkcfg;
volatile uint32_t *mrcmd;
volatile uint32_t *mrstatus;
uint32_t mrpoll;
uint32_t mrshift;
volatile uint32_t *initcmd;
volatile uint32_t *initstatus;
uint32_t mcuen;
} _amc_chregs[] = {
{ &rAMC_CH0RNKCFG0, &rAMC_CH0MRCMD, &rAMC_CH01MRSTATUS, 0x01, 8, &rAMC_CH0INITCMD, &rAMC_CH01INITSTATUS, 0x0001 },
{ &rAMC_CH1RNKCFG0, &rAMC_CH1MRCMD, &rAMC_CH01MRSTATUS, 0x10, 16, &rAMC_CH1INITCMD, &rAMC_CH01INITSTATUS, 0x0100 },
{ &rAMC_CH2RNKCFG0, &rAMC_CH2MRCMD, &rAMC_CH23MRSTATUS, 0x01, 8, &rAMC_CH2INITCMD, &rAMC_CH23INITSTATUS, 0x0010 },
{ &rAMC_CH3RNKCFG0, &rAMC_CH3MRCMD, &rAMC_CH23MRSTATUS, 0x10, 16, &rAMC_CH3INITCMD, &rAMC_CH23INITSTATUS, 0x1000 },
};
static struct amc_memory_device_info _amc_device_info;
static bool _amc_device_info_inited;
/*
* Based on Fiji AMC Init.html (v48 - dated May 23, 2014). Tunables v7.1.0
* Capri AMC Init.html (v23 - dated May 23, 2014). Tunables v8.6.0
* j42d and j96 AMC Init.2GB.html (v48 - dated Dec 11, 2014)
*/
void amc_mrcmd(amc_mrcmd_op_t op, uint8_t channels, uint8_t ranks, int reg, uintptr_t val)
{
uint8_t ch, r;
for (ch = 0; ch < channels; ch++) {
for (r = 0; r < ranks; r++) {
amc_mrcmd_to_ch_rnk(op, ch, r, reg, val);
}
}
}
// Only send the cmd to specific channel and rank (used during calibration on H6 and later)
void amc_mrcmd_to_ch_rnk(amc_mrcmd_op_t op, uint8_t channel, uint8_t rank, int32_t reg, uintptr_t val)
{
uint32_t cmd, regval;
uint8_t *buffer = (uint8_t *) val;
if (op == MR_READ)
cmd = 0x00000011 | (reg << 8);
else
cmd = 0x00000001 | (reg << 8) | (((uint32_t)val) << 24);
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
*_amc_chregs[channel].mrcmd = cmd | (rank << 16);
while(((regval = *_amc_chregs[channel].mrstatus) & _amc_chregs[channel].mrpoll) != 0) ;
if (op == MR_READ)
*buffer++ = (regval >> _amc_chregs[channel].mrshift) & 0xff;
}
void amc_enable_autorefresh(void)
{
// Configure auto-refresh. Freq0 has the auto-refresh enable, so do it last.
rAMC_AREFEN_FREQ(3) = 0x00000000;
rAMC_AREFEN_FREQ(2) = 0x00000000;
rAMC_AREFEN_FREQ(1) = 0x00000000;
rAMC_AREFEN_FREQ(0) = 0x01011111;
}
int32_t amc_init(bool resume)
{
uint8_t config_id = 0;
uint32_t tREFi;
uint64_t deadline;
uint32_t ch, r, i;
#if AMC_PARAMS_AP_DEV
if (target_config_dev()) {
memcpy(&amc_params, &amc_params_dev, sizeof(amc_params));
} else {
memcpy(&amc_params, &amc_params_ap, sizeof(amc_params));
}
#endif
amc_params_initialized = true;
// Make sure we're at full memory frequency
clocks_set_performance(kPerformanceMemoryFull);
// The clock_reset_device() call takes care of the requirements in <rdar://problem/7269959>
clock_reset_device(CLK_MCU);
// Keep track of 50us after MCU reset to ensure resume timing is in spec
deadline = timer_get_ticks() + timer_usecs_to_ticks(50);
//////////////////////////////////////////////////////////
//
// 1. AMC initial configuration
//
//////////////////////////////////////////////////////////
rAMC_PHYUPDATETIMERS = 0x50;
amc_phy_preinit();
rAMC_LAT = amc_params.lat;
rAMC_PHYRDWRTIM = amc_params.phyrdwrtim;
tREFi = amc_params.tREFi;
for (i = 0; i < AMC_FREQUENCY_SLOTS; i++) {
rAMC_CAS_FREQ(i) = amc_params.freq[i].cas;
rAMC_PCH_FREQ(i) = amc_params.freq[i].pch;
rAMC_ACT_FREQ(i) = amc_params.freq[i].act;
rAMC_AUTO_FREQ(i) = amc_params.freq[i].autoref | ((i == 0) ? tREFi : 0);
rAMC_SELF_FREQ(i) = amc_params.freq[i].selfref;
rAMC_MODE_FREQ(i) = amc_params.freq[i].modereg;
}
rAMC_PDN = amc_params.pdn;
rAMC_DERATE = amc_params.derate;
rAMC_RD = amc_params.read;
rAMC_BUSTAT_FREQ01 = amc_params.bustat;
rAMC_BUSTAT_FREQ23 = amc_params.bustat2;
rAMC_MIFCASSCH_FREQ(0) = 0x110;
for (ch = 0; ch < AMC_NUM_CHANNELS; ch++)
for (r = 0; r < AMC_NUM_RANKS; r++)
*(_amc_chregs[ch].rnkcfg + AMC_RNKCFG_OFFSET(r)) = 1;
rAMC_PWRMNGTEN = amc_params.pwrmngten_default;
rAMC_SCHEN = amc_params.schen_default; // disable the scheduler
rAMC_MCPHY_UPDTPARAM1 = amc_params.mcphyupdate1;
rAMC_MCPHY_UPDTPARAM = amc_params.mcphyupdate;
// Enable MCUs
rAMC_AMCEN = 0;
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
for (ch = 0; ch < AMC_NUM_CHANNELS; ch++)
rAMC_AMCEN |= _amc_chregs[ch].mcuen;
amc_configure_address_decoding_and_mapping();
//////////////////////////////////////////////////////////
//
// 2. PHY Initial Configuartions
//
//////////////////////////////////////////////////////////
amc_phy_init(resume);
//////////////////////////////////////////////////////////
//
// 3. Self-Refresh and DRAM Reset
//
//////////////////////////////////////////////////////////
// Wait 5 us after Impedence Calibration to avoid McPhyPending
// preventing the SRFSM from exiting SR.
spin(5);
amc_phy_restore_calibration_values(resume);
rAMC_AREFPARAM = amc_params.arefparam;
amc_enable_slow_boot(true);
#if !SUPPORT_FPGA
// Enable auto refresg derating by setting TempDrtEn
rAMC_ODTS = 0x00010000;
#endif
rAMC_LONGSR = amc_params.longsr;
if (resume) {
amc_enable_autorefresh();
// Software must guarantee that at least 50 us have passed since the de-assertion
// of AMC reset before self-refresh exit, in the resume-boot case.
while (deadline > timer_get_ticks()) ;
}
for (ch = 0; ch < AMC_NUM_CHANNELS; ch++)
*_amc_chregs[ch].initcmd = 0x00001000; // start self-refresh exit seq on ch
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
for (ch = 0; ch < AMC_NUM_CHANNELS; ch++)
while (*_amc_chregs[ch].initcmd != 0) ;
//////////////////////////////////////////////////////////
//
// 4. DRAM Reset, ZQ Calibration & Configuration (cold boot only)
//
//////////////////////////////////////////////////////////
if (!resume) {
spin(200);
// MR63 (DRAM reset and auto-refresh enable)
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0x3f, 0xfc);
spin(12);
// MR10 (ZQ initial calibration)
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0xa, 0xff);
spin(1);
// MR2 register (read/write latency, assumes legal combo in amc_params)
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0x2, amc_params.mr2);
// MR1
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0x1, amc_params.mr1);
// MR3 register (output buffer drive strength 48-Ohm unless overridden)
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0x3, (amc_params.mr3 ? amc_params.mr3 : 0x3));
}
//////////////////////////////////////////////////////////
//
// 5. Topology-specific AMC re-configuration
//
//////////////////////////////////////////////////////////
if (resume) {
rAMC_ZQC = 0x00090000;
amc_mrcmd(MR_WRITE, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0xa, 0xab);
spin(1);
rAMC_ZQC = 0x00080000;
}
rAMC_ADDRCFG = amc_params.addrcfg;
// Read device info: vendor, revision, and configuration info
// Configuration info: device width, device type, device density
// We are assuming all of our devices are identical
amc_mrcmd(MR_READ, 1, 1, 0x5, (uintptr_t)&_amc_device_info.vendor_id);
amc_mrcmd(MR_READ, 1, 1, 0x6, (uintptr_t)&_amc_device_info.rev_id);
amc_mrcmd(MR_READ, 1, 1, 0x7, (uintptr_t)&_amc_device_info.rev_id2);
amc_mrcmd(MR_READ, 1, 1, 0x8, (uintptr_t)&config_id);
#if SUPPORT_FPGA
if ((config_id == 0xff) || (config_id == 0)) {
// Fake the MR_READ results to something accurate but innocuous
config_id = (0 << JEDEC_MR8_WIDTH_SHIFT) | (5 << JEDEC_MR8_DENSITY_SHIFT) | (0 << JEDEC_MR8_TYPE_SHIFT);
_amc_device_info.vendor_id = JEDEC_MANUF_ID_RSVD2;
}
#endif
if ((_amc_device_info.vendor_id == 0) || (config_id == 0))
panic("failed to read vendor-id/config-id, vid:%08x, config:%08x, rev:%08x\n", _amc_device_info.vendor_id,
config_id, _amc_device_info.rev_id);
_amc_device_info.width = (32 >> ((config_id >> JEDEC_MR8_WIDTH_SHIFT) & JEDEC_MR8_WIDTH_MASK)) >> 3;
_amc_device_info.density = ((config_id >> JEDEC_MR8_DENSITY_SHIFT) & JEDEC_MR8_DENSITY_MASK);
_amc_device_info.type = ((config_id >> JEDEC_MR8_TYPE_SHIFT) & JEDEC_MR8_TYPE_MASK);
_amc_device_info_inited = true;
dprintf(DEBUG_INFO, "sdram vendor id:0x%02x rev id:0x%02x rev id2:%02x\n",
_amc_device_info.vendor_id, _amc_device_info.rev_id, _amc_device_info.rev_id2);
dprintf(DEBUG_INFO, "sdram config: width %d/%d Mbit/type %d\n", _amc_device_info.width << 3,
64 << _amc_device_info.density, _amc_device_info.type);
if ((_amc_device_info.density < JEDEC_DENSITY_1Gb) || (_amc_device_info.density > JEDEC_DENSITY_32Gb))
panic("unsupported DRAM density: %dMbit", 64 << _amc_device_info.density);
uint32_t device_size_Mbits = 64 << _amc_device_info.density;
uint32_t total_size_Mbytes = (AMC_NUM_CHANNELS * AMC_NUM_RANKS * device_size_Mbits) >> 3;
// Units of 128 MBs in the register
rMCC_DRAMACCCTRL = (total_size_Mbytes >> 7) - 1;
dprintf(DEBUG_INFO, "rMCC_DRAMACCCTRL: 0x%08x, memory_size: %u bytes\n", rMCC_DRAMACCCTRL, (total_size_Mbytes << 20));
rMCC_CHNLDEC = amc_params.mccchnldec;
rAMC_MCSCHNLDEC = amc_params.mcschnldec;
rMCC_MCUCHNHASH = amc_params.mcuchnhash;
if (amc_params.mcuchnhash2)
rMCC_MCUCHNHASH2 = amc_params.mcuchnhash2;
// DRAM vendor-specific workarounds
amc_dram_workarounds(resume);
//////////////////////////////////////////////////////////
//
// 6. Switch from boot-clock speed to normal speed
//
//////////////////////////////////////////////////////////
// Wait 5 us before freq change to make sure all refreshes have been flushed
spin(5);
rAMC_SCHEN = amc_params.schen_default | 0x1; // enable the scheduler
amc_phy_pre_normal_speed_enable();
amc_enable_slow_boot(false);
//////////////////////////////////////////////////////////
//
// 7. PHY DQ and address timing calibration
//
//////////////////////////////////////////////////////////
#if !SUPPORT_FPGA
rAMC_READ_LEVELING = amc_params.readleveling;
amc_phy_calibration_ca_rddq_cal(resume);
#endif // !SUPPORT_FPGA
//////////////////////////////////////////////////////////
//
// 8. Enable other features
//
//////////////////////////////////////////////////////////
rAMC_ZQC = 0x010c03ff;
rAMC_QBREN = 0x00110001;
if (!resume)
amc_enable_autorefresh();
//////////////////////////////////////////////////////////
//
// 9. Enable the Fast Critical Word Forwarding feature
//
//////////////////////////////////////////////////////////
rAMC_QBRPARAM = amc_params.qbrparam;
rAMC_QBREN = 0x00111001;
rMCC_MCCGEN = 0x00000126;
//////////////////////////////////////////////////////////
//
// 10. PHY write DQ calibration
//
//////////////////////////////////////////////////////////
#if !SUPPORT_FPGA
amc_phy_calibration_wrdq_cal(resume);
#endif
rAMC_PHYUPDATETIMERS = 0x00000f50;
//////////////////////////////////////////////////////////
//
// 11. Enable Power & ClockGating features
//
//////////////////////////////////////////////////////////
amc_phy_finalize();
amc_finalize(resume);
//////////////////////////////////////////////////////////
//
// 12. ODTS read and bring memory out of self-refresh
//
//////////////////////////////////////////////////////////
// MR4 read to bring memory out of self-refresh
uint8_t temp;
amc_mrcmd(MR_READ, AMC_NUM_CHANNELS, AMC_NUM_RANKS, 0x4, (uintptr_t)&temp);
rAMC_ODTS |= amc_params.odts;
// Program tunables at the end
for (i = 0; i < sizeof(amc_tunables) / sizeof(amc_tunables[0]); i++) {
if (amc_tunables[i].reg == 0)
break;
*amc_tunables[i].reg = amc_tunables[i].value;
}
// cache memory info for later
platform_set_memory_info(_amc_device_info.vendor_id, amc_get_memory_size());
return 0;
}
void mcu_late_init(void)
{
}
uint64_t amc_get_memory_size(void)
{
// if memory is not inited, density is unknown, spin here ...
if (false == _amc_device_info_inited)
for(;;) ;
// device density (in MBytes) * num of channels * num of ranks
return ((8 << _amc_device_info.density) * AMC_NUM_CHANNELS * AMC_NUM_RANKS);
}
const struct amc_memory_device_info *amc_get_memory_device_info(void)
{
// if memory is not inited, device info is unknown, spin here ...
if (false == _amc_device_info_inited)
for(;;) ;
return ((const struct amc_memory_device_info *)&_amc_device_info);
}
const struct amc_param *amc_get_params(void)
{
ASSERT(amc_params_initialized);
return &amc_params;
}
/*
* Some routines used during dynamic calibration
*/
// Some AMC features to be changed before calibration starts, and restored after calibration is complete
void amc_calibration_start(bool start)
{
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
if (start) {
// Disable OdtsRdIntrvl
rAMC_ODTS &= 0xFFFFFC00;
} else {
// Re-enable OdtsRdIntrvl
rAMC_ODTS |= amc_params.odts;
}
}
void amc_enable_rddqcal(bool enable)
{
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
if (enable) {
rAMC_READ_LEVELING |= 1;
} else {
rAMC_READ_LEVELING &= ~1;
}
}
void amc_wrdqcal_start(bool start)
{
if (start) {
// Enable WriteMergeEn and WqInOrderEn
rAMC_PSQWQCTL0 = (1 << 8) | (1 << 0);
// <rdar://problem/16239984> Alcatraz, Fiji, Capri: L2_TB: MCU PIO accesses to the same address and device stream getting reordered in CP
platform_memory_barrier();
// Set SelfRefTmrVal to max
rAMC_PWRMNGTPARAM |= (0xFFFF << 16);
// Designer suggests 0xBB, so that writes do not age out
rAMC_PSQWQCTL1 = 0xBB;
} else {
rAMC_PSQWQCTL0 = 0;
}
}
// returns 1 if number of 1s in input is odd, otherwise returns 0
static uint32_t amc_odd_parity(uint32_t input)
{
uint32_t output = input;
output = (output & 0x0000ffff) ^ (output >> 16);
output = (output & 0x000000ff) ^ (output >> 8);
output = (output & 0x0000000f) ^ (output >> 4);
output = (output & 0x00000003) ^ (output >> 2);
output = (output & 0x00000001) ^ (output >> 1);
return output;
}
// Given ch, rnk, bank, row, and col, compute the Apple Fabric address that CPU can use to do reads/writes
// For details of addr mapping, see "Address_Unamp.xls" at
// https://seg-fijipublic.ecs.apple.com/doc/release/index.php?dir=/reference/org-seg-services-vhost-seg--fijipublic.ecs.apple.com/content/doc/release/specs/Apple_IP/AMC
uint64_t amc_get_uncached_dram_virt_addr(uint32_t ch, uint32_t rnk, uint32_t bank, uint32_t row, uint32_t col)
{
uint64_t system_addr;
uint32_t ch_dropped_addr, ch_inserted_val;
uint32_t col_val;
uint32_t bank_addr_pos, col_low_bits, col_low_mask;
uint32_t rank_off, bank_off, row_off, col_off;
uint32_t temp_bank_bit2, temp_bank_bit1, temp_bank_bit0;
uint32_t rank_wid, bank_wid, row_wid, col_wid;
uint32_t addrcfg = rAMC_ADDRCFG;
uint32_t ch_insert_point, ch_insert_width, ch_insert_mask;
uint32_t addrmapmode = rAMC_ADDRMAP_MODE;
uint32_t mcsaddrbankhash0 = rAMC_MCSADDRBNKHASH(0);
uint32_t mcsaddrbankhash1 = rAMC_MCSADDRBNKHASH(1);
uint32_t mcsaddrbankhash2 = rAMC_MCSADDRBNKHASH(2);
uint32_t chnldec = rMCC_CHNLDEC;
uint32_t mcschnldec = rAMC_MCSCHNLDEC;
system_addr = SDRAM_BASE_UNCACHED;
/*
DRAM Address Mapping Mode (H7 uses RIBI1)
RSBS: 0 Rank Stacked, Bank Stacked. {CS, BA, RA, CA}
RIBI1: 1 Rank Interleaved, Bank Interleaved, Option 1. {RA, CA-high, CS, BA, CA-low(128B)}
RIBI2: 2 Rank Interleaved, Bank Interleaved, Option 2. {RA, CS, BA, CA}
RSBI1: 3 Rank Stacked, Bank Interleaved, Option 1. {CS, RA, CA-high, BA, CA-low(128B)}
RIBI3: 4 Rank Interleaved, Bank Interleaved, Option 3. {RA, CS, CA-high, BA, CA-low(128B)}
*/
/*
BnkAddrWid
2-bits: 0
3-bits: 1 (H7)
ColAddrWid
8-bits: 0
9-bits: 1
10-bits: 2 (H7)
11-bits: 3
RowAddrWid
12-bits: 0
13-bits: 1
14-bits: 2 (H7)
15-bits: 3
CsWid
0-bits: 0
1-bits: 1
*/
// whether rank needs a bit depends on ADDRCFG.CSWID bit
rank_wid = ((addrcfg >> 24) & 1);
// rest of the bit widths also depend on ADDRCFG fields
bank_wid = (addrcfg & 1) + 2;
row_wid = ((addrcfg >> 16) & 0x3) + 12;
col_wid = ((addrcfg >> 8) & 0x3) + 8;
// column bits always start at bit 2 (each [row, col] specifies 4 bytes)
col_off = 2;
bank_addr_pos = 6 + ((addrmapmode & 0x700) >> 8);
switch(addrmapmode & 1)
{
case 0:
col_val = col;
row_off = col_off + col_wid;
bank_off = row_off + row_wid;
rank_off = bank_off + bank_wid;
break;
default:
case 1:
// RIBI1 (H7)
if (bank_addr_pos == (col_wid + col_off)) {
col_val = col;
bank_off = col_off + col_wid;
rank_off = bank_off + bank_wid;
row_off = rank_off + rank_wid;
} else {
// bank bits interleaved with column bits (not POR on H7)
col_low_bits = bank_addr_pos - col_off;
col_low_mask = (1 << col_low_bits) - 1;
col_val = ((col & ~col_low_mask) << bank_wid) | (col & col_low_mask);
bank_off = bank_addr_pos;
rank_off = col_off + col_wid + bank_wid;
row_off = rank_off + rank_wid;
}
break;
}
// bank hashing
//
temp_bank_bit2 = amc_odd_parity(row & ~mcsaddrbankhash2);
temp_bank_bit1 = amc_odd_parity(row & ~mcsaddrbankhash1);
temp_bank_bit0 = amc_odd_parity(row & ~mcsaddrbankhash0);
bank = bank ^ ((temp_bank_bit2 << 2) | (temp_bank_bit1 << 1) | temp_bank_bit0);
// our address so far - only the channel num stuff is missing now
//
ch_dropped_addr = (rnk << rank_off) | (bank << bank_off) | (row << row_off) | (col_val << col_off);
/*
ChSelTyp
Interleaving: 0 (H7)
Stacked: 1
*/
if (chnldec & 1) {
// in stacked mode, ch will be inserted at bit 29 for H7
ch_inserted_val = ch_dropped_addr | (ch << (((chnldec >> 16) & 0xF) + 24));
}
else { // interleaving
// for H7, ch is inserted for interleaving at bit specified by rAMC_MCSCHNLDEC.ChnlStartBit
ch_insert_point = 6 + ((mcschnldec & 0x300) >> 8);
// ch insertion width (0, 1, 2, or 3 bits) depends on how many channels are enabled
ch_insert_width = (mcschnldec & 0x30000) >> 16;
// now fix the address so we can reconstruct the XOR
ch_insert_mask = (1 << ch_insert_point) - 1;
ch_dropped_addr = ((ch_dropped_addr & ~ch_insert_mask) << ch_insert_width) | (ch_dropped_addr & ch_insert_mask);
if (ch_insert_width <= 1) {
// calculate the XOR value - XOR all the bits (only the bits that can participate -- determined via rMCC_MCUCHNHASH)
ch_inserted_val = ch | (ch_dropped_addr >> ch_insert_point);
// now shift up the ch_inserted_val to align with rMCC_MCUCHNHASH, whose bit 0 maps to PA[6] of AF address
ch_inserted_val = amc_odd_parity((ch_inserted_val << (ch_insert_point - 6)) & rMCC_MCUCHNHASH);
} else {
// This code only handles 2 bits for channel number
if (ch_insert_width > 2)
panic("Unable to handle addressing for more than 4 channels");
// handle 2 bit channel value differently (for Capri)
uint32_t chnhash_addr = (ch << (ch_insert_point - 6) | (ch_dropped_addr >> 6));
ch_inserted_val = amc_odd_parity(chnhash_addr & rMCC_MCUCHNHASH);
ch_inserted_val |= (amc_odd_parity(chnhash_addr & rMCC_MCUCHNHASH2)) << 1;
}
// finally, insert the XOR bits
ch_insert_mask = (1 << ch_insert_width) - 1; // reuse this var in a pseudo-related way
ch_inserted_val = ch_dropped_addr | ((ch_inserted_val & ch_insert_mask) << ch_insert_point);
}
system_addr += (uint64_t) ch_inserted_val;
return system_addr;
}
// Returns number of consecutive bytes given channel and rank before channel interleaving
uint32_t amc_get_consecutive_bytes_perchnrnk(void)
{
// FIXME: DV says assume this is 0 for now (resulting in 64 consecutive bytes)
// uint32_t ch_start_bit = (rAMC_MCSCHNLDEC & 0x300) >> 8;
uint32_t ch_start_bit = 0;
// given ChnlStartBit, consecutive bytes is simply 1 << (6 + ChnlStartBit)
return (1 << (6 + ch_start_bit));
}