iBoot/platform/s5l8945x/pmgr/pmgr.c

1088 lines
39 KiB
C

/*
* Copyright (C) 2010-2014 Apple Inc. All rights reserved.
*
* This document is the property of Apple Inc.
* It is considered confidential and proprietary.
*
* This document may not be reproduced or transmitted in any form,
* in whole or in part, without the express written permission of
* Apple Inc.
*/
#include <debug.h>
#include <drivers/power.h>
#include <platform.h>
#include <platform/clocks.h>
#include <platform/gpio.h>
#include <platform/gpiodef.h>
#include <platform/power.h>
#include <platform/timer.h>
#include <platform/soc/chipid.h>
#include <platform/soc/hwclocks.h>
#include <platform/soc/miu.h>
#include <platform/soc/pmgr.h>
#include <sys/boot.h>
#include <target.h>
#if !APPLICATION_EMBEDDEDIOP
#define PLL_VCO_TARGET(pllx) (2ULL * pllx##_O * pllx##_M / pllx##_P)
#define PLL_FREQ_TARGET(pllx) (2ULL * pllx##_O * pllx##_M / pllx##_P / (1 << pllx##_S))
static u_int32_t clk_divs_bypass[PMGR_CLK_CFG_COUNT] = {
0x80008421, 0x80000000, 0x80000000, 0x80000001, // cpu, mcu_fixed, mcu, pclk1
0x80000001, 0x80000001, 0x80000001, 0x80000001, // prediv0, prediv1, prediv2, prediv3
0x80000001, 0x80000001, 0x80000001, 0x80000000, // prediv4, prediv5, prediv6, managed0
0x80000000, 0x80000000, 0x80000000, 0x80000000, // managed1, managed2, managed3, managed4
0x80000000, 0x80000000, 0x80000001, 0x80000001, // managed5, aes_core, vid1, medium0
0x80000001, 0xB0000001, 0x80000001, 0x80000001, // vid0, i2c, sdio, audio
0x80000001, 0x80000001, 0x80000001, 0x80000001, // hpark_pclk0, hpark_tclk, uperf, debug
0x80000001, 0x80000001, 0x80000001, 0x80000001, // hperf_rt, gfx, gfx_slc, hperf_nrt
0x80000001, 0x80000001, 0x80000001, 0x80000001, // isp, iop, cdio, lperfs,
0x80000001, 0x80000001, 0x80000001, 0x80000001, // pclk0, pclk2, pclk3, medium1
0x80000001, 0x80000001, 0x80000001, 0x80000001, // spi0, spi1, spi2, spi3,
0x80000001, 0x80000021, 0x80000001, 0x80000001, // spi4, sleep, usbphy, usbphy1
0x80000001, 0x80000001, 0x80000001, 0x80000001, // usbohci, usb12, nco_ref0, nco_ref1
0x80000001, 0x80000001, 0x80000000, 0x80000001, // nco_ref2, venc_mtx, venc, slv_bus
};
static u_int32_t perf_state_bypass[3] = {
0x01010101, 0x03010101, 0x00010101, // defaults, slow mcu_cfg
};
struct perf_info {
u_int8_t perf_state;
u_int8_t perf_div;
};
#if APPLICATION_IBOOT
#ifndef TARGET_PREDIV6_DIV
#define TARGET_PREDIV6_DIV 5
#endif
#ifndef TARGET_VID0_DIV
#define TARGET_VID0_DIV 1
#endif
#define PLL0 0
#define PLL0_O OSC_FREQ
#define PLL0_P 6
#define PLL0_M 250
#define PLL0_S 1
#define PLL0_V PLL_VCO_TARGET(PLL0)
#define PLL0_T PLL_FREQ_TARGET(PLL0)
#define PLL1 1
#define PLL1_O OSC_FREQ
#define PLL1_P 6
#define PLL1_M 200
#define PLL1_S 1
#define PLL1_V PLL_VCO_TARGET(PLL1)
#define PLL1_T PLL_FREQ_TARGET(PLL1)
#define PLL2 2
#define PLL2_O OSC_FREQ
#define PLL2_P 6
#define PLL2_M 200
#define PLL2_S 2
#define PLL2_V PLL_VCO_TARGET(PLL2)
#define PLL2_T PLL_FREQ_TARGET(PLL2)
#define PLL3 3
#define PLL3_O OSC_FREQ
#define PLL3_P 4
#define PLL3_M 171
#define PLL3_S 1
#define PLL3_V PLL_VCO_TARGET(PLL3)
#define PLL3_T PLL_FREQ_TARGET(PLL3)
// PLL4 not used on H4G
#define PLL5 5
#define PLL5_O OSC_FREQ
#define PLL5_P 4
#define PLL5_M 100
#define PLL5_S 1
#define PLL5_V PLL_VCO_TARGET(PLL5)
#define PLL5_T PLL_FREQ_TARGET(PLL5)
#define PLLUSB 6
#define PLLUSB_O OSC_FREQ
#define PLLUSB_P 4
#define PLLUSB_M 160
#define PLLUSB_S 2
#define PLLUSB_V PLL_VCO_TARGET(PLLUSB)
#define PLLUSB_T PLL_FREQ_TARGET(PLLUSB)
#define D_PREDIV6 (0xA0000000 | TARGET_PREDIV6_DIV)
#define D_VID0 (0xB0000000 | TARGET_VID0_DIV)
static u_int32_t clk_divs_active[PMGR_CLK_CFG_COUNT] = {
0x90011041, 0x80000001, 0x80000001, 0x90000002, // cpu, mcu_fixed, mcu, pclk1
0xA0000005, 0xA0000002, 0xA0000003, 0x00000000, // prediv0, prediv1, prediv2, prediv3
0x90000001, 0x00000000, D_PREDIV6, 0x80000000, // prediv4, prediv5, prediv6, managed0
0x00000000, 0x80000000, 0x80000000, 0x80000000, // managed1, managed2, managed3, managed4
0x80000000, 0x80000000, 0xA0000013, 0x80000004, // managed5, aes_core, vid1, medium0
D_VID0, 0x80000008, 0x80000004, 0xA0000002, // vid0, i2c, sdio, audio
0x90000004, 0xA0000002, 0xA0000007, 0x80000008, // hpark_pclk0, hpark_tclk, uperf, debug
0xB0000001, 0x80000001, 0xB0000001, 0xA0000001, // hperf_rt, gfx, gfx_slc, hperf_nrt
0xA0000001, 0xB0000001, 0xB0000001, 0xB0000002, // isp, iop, cdio, lperfs
0x80000001, 0x80000001, 0x80000001, 0x8000000A, // pclk0, pclk2, pclk3, medium1
0xB0000001, 0xB0000001, 0x80000001, 0xB0000001, // spi0, spi1, spi2, spi3
0xB0000001, 0x80000314, 0x80000001, 0x80000001, // spi4, sleep, usbphy, usbphy1
0x80000001, 0x80000002, 0xA0000001, 0xB0000001, // usbohci, usb12, nco_ref0, nco_ref1
0x00000000, 0xA0000002, 0x80000002, 0xA0000002 // nco_ref2, venc_mtx, venc, slv_bus
};
#define PLL_GATES_ACTIVE (0)
static struct perf_info perf_levels[] = {
[kPerformanceHigh] = { kPERF_STATE_IBOOT+0, 1 },
[kPerformanceMedium] = { kPERF_STATE_IBOOT+1, 2 },
[kPerformanceLow] = { kPERF_STATE_IBOOT+2, 4 },
[kPerformanceMemory] = { kPERF_STATE_IBOOT+4, 4 },
};
#define PERF_STATE_ACTIVE kPERF_STATE_IBOOT
#if SUPPORT_FPGA
// mcu_cfg=3, mcu_clk and mcu_fixed_clk always divide by 1
static u_int32_t perf_state_active[kPERF_STATE_IBOOT_CNT*3] = {
0x01010022, 0x03210142, 0x00214142, // divide by 1
0x02010023, 0x03210143, 0x00214142, // divide by 2
0x04010023, 0x03210143, 0x00214142, // divide by 4
0x1f010023, 0x03210143, 0x00214142, // DPSM divider
0x04010023, 0x03210143, 0x00214142, // divide by 4
};
#else
// For rdar://9188170 : we must avoid MCU clock transitions. Lock the MCU to max speed.
static u_int32_t perf_state_active[kPERF_STATE_IBOOT_CNT*3] = {
0x01010022, 0x00210142, 0x00214142, // divide by 1, mcu_cfg=0
0x01010023, 0x00210143, 0x00214142, // divide by 2, mcu_cfg=0
0x04010023, 0x00210143, 0x00214142, // divide by 4, mcu_cfg=0
0x1f010023, 0x00210143, 0x00214142, // DPSM divider, mcu_cfg=0
0x04010023, 0x00210143, 0x00214142, // divide by 4, mcu_cfg=0
};
#endif
#endif // APPLICATION_IBOOT
#if APPLICATION_SECUREROM
#define PLL0 0
#define PLL0_O OSC_FREQ
#define PLL0_P 6
#define PLL0_M 175
#define PLL0_S 2
#define PLL0_V PLL_VCO_TARGET(PLL0)
#define PLL0_T PLL_FREQ_TARGET(PLL0)
#define PLL3 3
#define PLL3_O OSC_FREQ
#define PLL3_P 4
#define PLL3_M 171
#define PLL3_S 3
#define PLL3_V PLL_VCO_TARGET(PLL3)
#define PLL3_T PLL_FREQ_TARGET(PLL3)
static u_int32_t clk_divs_active[PMGR_CLK_CFG_COUNT] = {
0x90021041, 0x80000000, 0x80000000, 0xA0000003, // cpu, mcu_fixed, mcu, pclk1
0xA0000001, 0x00000000, 0x00000000, 0x00000000, // prediv0, prediv1, prediv2, prediv3
0x00000000, 0x00000000, 0x00000000, 0x80000000, // prediv4, prediv5, prediv6, managed0
0x00000000, 0x00000000, 0x00000000, 0x00000000, // managed1, managed2, managed3, managed4
0x00000000, 0x80000000, 0x00000000, 0x00000000, // managed5, aes_core, vid1, medium0
0x00000000, 0x00000000, 0x00000000, 0x80000002, // vid0, i2c, sdio, audio
0x00000000, 0x00000000, 0x80000008, 0x80000008, // hpark_pclk0, hpark_tclk, uperf, debug
0x00000000, 0x00000000, 0x00000000, 0x00000000, // hperf_rt, gfx, gfx_slc, hperf_nrt
0x00000000, 0x00000000, 0x80000001, 0x80000001, // isp, iop, cdio, lperfs
0x80000001, 0x80000001, 0x80000001, 0x00000000, // pclk0, pclk2, pclk3, medium1
0xB0000001, 0x80000001, 0x80000001, 0xB0000001, // spi0, spi1, spi2, spi3
0x80000001, 0x80000314, 0x00000000, 0x00000000, // spi4, sleep, usbphy, usbphy1
0x00000000, 0x00000000, 0x00000000, 0x00000000, // usbohci, usb12, nco_ref0, nco_ref1
0x00000000, 0x00000000, 0x00000000, 0x00000000 // nco_ref2, venc_mtx, venc, slv_bus
};
#define PLL_GATES_ACTIVE (0)
#define PERF_STATE_ACTIVE kPERF_STATE_SECUREROM
// For rdar://9188170 : we must avoid MCU clock transitions. Bear this in mind if additional
// perf_states are defined.
static u_int32_t perf_state_active[3] = {
0x00000004, 0x03010100, 0x00040000, // managed3-0, slow mcu_cfg, aes_core
};
static struct perf_info perf_levels[] = {
[kPerformanceHigh] = { kPERF_STATE_SECUREROM, 1 },
[kPerformanceMedium] = { kPERF_STATE_SECUREROM, 1 },
[kPerformanceLow] = { kPERF_STATE_SECUREROM, 1 },
[kPerformanceMemory] = { kPERF_STATE_SECUREROM, 1 },
};
#endif // APPLICATION_SECUREROM
/* current clock speeds */
static u_int32_t clks[PMGR_CLK_COUNT];
static u_int32_t *plls = &clks[PMGR_CLK_PLL0];
static u_int32_t perf_level;
static u_int32_t perf_div;
struct clk_parent {
volatile u_int32_t *divider_reg;
u_int32_t divider_slot;
u_int8_t parents[4];
};
/* Based on PMGR 1.16 */
static const struct clk_parent clk_parents[PMGR_CLK_COUNT] = {
[PMGR_CLK_OSC] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL0] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL1] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL2] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL3] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL4] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL5] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_PLLUSB] = { 0, 0, { 0, 0, 0, 0 } },
[PMGR_CLK_DOUBLER] = { &rPMGR_DOUBLER_CTL, 0, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_CPU] = { &rPMGR_CPU_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL0, PMGR_CLK_PLL1, 0 } },
[PMGR_CLK_MEM] = { &rPMGR_CPU_CLK_CFG, 2, { PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU } },
[PMGR_CLK_PIO] = { &rPMGR_CPU_CLK_CFG, 3, { PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU } },
[PMGR_CLK_ACP] = { &rPMGR_CPU_CLK_CFG, 4, { PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU, PMGR_CLK_CPU } },
[PMGR_CLK_MCU_FIXED] = { &rPMGR_MCU_FIXED_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_MCU] = { &rPMGR_MCU_CLK_CFG, 1, { PMGR_CLK_MCU_FIXED, 0, 0, 0 } },
[PMGR_CLK_PREDIV0] = { &rPMGR_PREDIV0_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_PREDIV1] = { &rPMGR_PREDIV1_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_PREDIV2] = { &rPMGR_PREDIV2_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_PREDIV3] = { &rPMGR_PREDIV3_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_PREDIV4] = { &rPMGR_PREDIV4_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL5, PMGR_CLK_PLL3, PMGR_CLK_PLL4 } },
[PMGR_CLK_PREDIV5] = { &rPMGR_PREDIV5_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL4 } },
[PMGR_CLK_PREDIV6] = { &rPMGR_PREDIV6_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_MANAGED0] = { &rPMGR_MANAGED0_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV4, PMGR_CLK_PREDIV5 } },
[PMGR_CLK_MANAGED1] = { &rPMGR_MANAGED1_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV5 } },
[PMGR_CLK_MANAGED2] = { &rPMGR_MANAGED2_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MANAGED3] = { &rPMGR_MANAGED3_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MANAGED4] = { &rPMGR_MANAGED4_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV4, PMGR_CLK_PREDIV5 } },
[PMGR_CLK_MANAGED5] = { &rPMGR_MANAGED5_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV4, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_AES_CORE] = { &rPMGR_AES_CORE_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PLL2, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MEDIUM0] = { &rPMGR_MEDIUM0_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MEDIUM1] = { &rPMGR_MEDIUM1_CLK_CFG, 1, { PMGR_CLK_PLLUSB, 0, 0, 0 } },
[PMGR_CLK_VID0] = { &rPMGR_VID0_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV6 } },
[PMGR_CLK_VID1] = { &rPMGR_VID1_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_I2C] = { &rPMGR_I2C_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_OSC } },
[PMGR_CLK_SDIO] = { &rPMGR_SDIO_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_AUDIO] = { &rPMGR_AUDIO_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_HPARK_PCLK] = { &rPMGR_HPARK_PCLK0_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_HPARK_TCLK] = { &rPMGR_HPARK_TCLK_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_UPERF] = { &rPMGR_UPERF_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_DEBUG] = { &rPMGR_DEBUG_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_OSC } },
[PMGR_CLK_GFX] = { &rPMGR_GFX_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED4 } },
[PMGR_CLK_GFX_SLC] = { &rPMGR_GFX_SLC_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED4 } },
[PMGR_CLK_HPERFNRT] = { &rPMGR_HPERFNRT_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED3 } },
[PMGR_CLK_HPERFRT] = { &rPMGR_HPERFRT_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED5 } },
[PMGR_CLK_ISP] = { &rPMGR_ISP_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED3 } },
[PMGR_CLK_IOP] = { &rPMGR_IOP_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED3 } },
[PMGR_CLK_CDIO] = { &rPMGR_CDIO_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED3 } },
[PMGR_CLK_LPERFS] = { &rPMGR_LPERFS_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED3 } },
[PMGR_CLK_PCLK0] = { &rPMGR_PCLK0_CLK_CFG, 0, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_PCLK1] = { &rPMGR_PCLK1_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL4 } },
[PMGR_CLK_PCLK2] = { &rPMGR_PCLK2_CLK_CFG, 0, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_PCLK3] = { &rPMGR_PCLK3_CLK_CFG, 0, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_SPI0] = { &rPMGR_SPI0_CLK_CFG, 0, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI1] = { &rPMGR_SPI1_CLK_CFG, 0, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI2] = { &rPMGR_SPI2_CLK_CFG, 0, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI3] = { &rPMGR_SPI3_CLK_CFG, 0, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI4] = { &rPMGR_SPI4_CLK_CFG, 0, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SLOW] = { &rPMGR_SLEEP_CLK_CFG, 2, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_SLEEP] = { &rPMGR_SLEEP_CLK_CFG, 1, { PMGR_CLK_SLOW, 0, 0, 0 } },
[PMGR_CLK_USBPHY] = { &rPMGR_USBPHY_CLK_CFG, 0, { PMGR_CLK_PLLUSB, 0, 0, 0 } },
[PMGR_CLK_USBPHY1] = { &rPMGR_USBPHY1_CLK_CFG, 0, { PMGR_CLK_PLLUSB, 0, 0, 0 } },
[PMGR_CLK_USBOHCI] = { &rPMGR_USBOHCI_CLK_CFG, 0, { PMGR_CLK_MEDIUM1, PMGR_CLK_DOUBLER, 0, 0 } },
[PMGR_CLK_USB12] = { &rPMGR_USB12_CLK_CFG, 1, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_NCO_REF0] = { &rPMGR_NCO_REF0_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_NCO_REF1] = { &rPMGR_NCO_REF1_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV4 } },
[PMGR_CLK_NCO_REF2] = { &rPMGR_NCO_REF2_CLK_CFG, 1, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_VENC_MTX] = { &rPMGR_VENC_MTX_CLK_CFG, 1, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL5 } },
[PMGR_CLK_VENC] = { &rPMGR_VENC_CLK_CFG, 1, { PMGR_CLK_VENC_MTX, 0, 0, 0 } },
[PMGR_CLK_SLV_BUS] = { &rPMGR_SLV_BUS_CLK_CFG, 1, { PMGR_CLK_MANAGED0, PMGR_CLK_MANAGED1, PMGR_CLK_MANAGED2, PMGR_CLK_MANAGED4 } },
};
static void init_thermal_sensors(void);
static void clocks_get_frequencies(void);
static u_int32_t get_pll(int pll);
static void set_pll(int pll, u_int32_t p, u_int32_t m, u_int32_t s, u_int32_t v);
static void clocks_set_gates(u_int64_t *devices, bool enable);
static void clocks_quiesce_internal(void);
static void update_perf_state(u_int32_t new_perf_state);
void platform_power_init(void)
{
// Set Power Gating Parameters for all the power domains
rPMGR_PWR_GATE_TIME_A(1) = (208 << 16); // CPU0
rPMGR_PWR_GATE_TIME_B(1) = (32 << 26);
rPMGR_PWR_GATE_TIME_A(2) = (208 << 16); // CPU1
rPMGR_PWR_GATE_TIME_B(2) = (32 << 26);
rPMGR_PWR_GATE_TIME_A(3) = (54 << 16); // SCU
rPMGR_PWR_GATE_TIME_A(4) = (36 << 16); // L2RAM0
rPMGR_PWR_GATE_TIME_A(5) = (36 << 16); // L2RAM1
rPMGR_PWR_GATE_TIME_A(6) = (192 << 16) | (2 << 0); // IOP
rPMGR_PWR_GATE_TIME_B(6) = (32 << 26) | (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(7) = (568 << 16) | (7 << 0); // GFX
rPMGR_PWR_GATE_TIME_B(7) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(8) = (621 << 16) | (6 << 0); // HPERF-RT
rPMGR_PWR_GATE_TIME_B(8) = (2 << 16) | (2 << 8) | (9 << 0);
rPMGR_PWR_GATE_TIME_A(9) = (605 << 16) | (9 << 0); // ISP
rPMGR_PWR_GATE_TIME_B(9) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(10) = (366 << 16) | (4 << 0); // HPERF-NRT
rPMGR_PWR_GATE_TIME_B(10) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(11) = (472 << 16) | (6 << 0); // VDEC
rPMGR_PWR_GATE_TIME_B(11) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(12) = (529 << 16) | (8 << 0); // VENC
rPMGR_PWR_GATE_TIME_B(12) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(13) = (275 << 16) | (4 << 0); // FMI
rPMGR_PWR_GATE_TIME_B(13) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(14) = (149 << 16) | (1 << 0); // HPARK
rPMGR_PWR_GATE_TIME_B(14) = (2 << 16) | (2 << 8) | (4 << 0);
#if APPLICATION_IBOOT
/* clear CPU1's reset; it will still be powered down */
clock_reset_device(CLK_CPU1);
// Read thermal Fused values and store into thermal registers.
init_thermal_sensors();
#endif
}
extern void aic_spin(u_int32_t usecs);
void platform_power_spin(u_int32_t usecs)
{
aic_spin(usecs);
}
int clocks_init(void)
{
#if APPLICATION_IBOOT && (PRODUCT_IBOOT || PRODUCT_IBEC)
u_int32_t cnt;
clks[PMGR_CLK_OSC] = OSC_FREQ;
for (cnt = 0; cnt < 7; cnt++) plls[cnt] = get_pll(cnt);
/* Calculate our initial performance divider based on CPU_DIVISOR */
perf_div = (rPMGR_CPU_CLK_CFG & rPMGR_CLK_CFG_DIV_MASK) / (clk_divs_active[0] & rPMGR_CLK_CFG_DIV_MASK);
/* Match the divider to one of the performance levels */
if (perf_div == perf_levels[kPerformanceHigh].perf_div) perf_level = kPerformanceHigh;
else if (perf_div == perf_levels[kPerformanceMedium].perf_div) perf_level = kPerformanceMedium;
else if (perf_div == perf_levels[kPerformanceLow].perf_div) perf_level = kPerformanceLow;
clocks_get_frequencies();
#endif /* APPLICATION_IBOOT && (PRODUCT_IBOOT || PRODUCT_IBEC) */
return 0;
}
/* clocks_set_default - called by SecureROM, LLB, iBSS main via
platform_init_setup_clocks, so the current state of the chip is
either POR, or whatever 'quiesce' did when leaving SecureROM. */
int clocks_set_default(void)
{
u_int32_t cnt, reg, val, cpu_div;
volatile u_int32_t *clkcfgs = PMGR_FIRST_CLK_CFG;
/* Be sure the bypass performance state is set up */
rPMGR_PERF_STATE_A(kPERF_STATE_BYPASS) = perf_state_bypass[0];
rPMGR_PERF_STATE_B(kPERF_STATE_BYPASS) = perf_state_bypass[1];
rPMGR_PERF_STATE_C(kPERF_STATE_BYPASS) = perf_state_bypass[2];
#if APPLICATION_SECUREROM
rPMGR_PERF_STATE_A(kPERF_STATE_SECUREROM) = perf_state_active[0];
rPMGR_PERF_STATE_B(kPERF_STATE_SECUREROM) = perf_state_active[1];
rPMGR_PERF_STATE_C(kPERF_STATE_SECUREROM) = perf_state_active[2];
#endif
#if APPLICATION_IBOOT
for (cnt = 0; cnt < kPERF_STATE_IBOOT_CNT; cnt++) {
rPMGR_PERF_STATE_A(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt*3) + 0];
rPMGR_PERF_STATE_B(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt*3) + 1];
rPMGR_PERF_STATE_C(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt*3) + 2];
}
// Save the PERF_STATE configuration in rPMGR_SCRATCH1
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(0), kPERF_STATE_IBOOT + 0);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(1), kPERF_STATE_IBOOT + 1);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_P, kPERF_STATE_IBOOT + 3);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(0), kPERF_STATE_IBOOT + 0);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(1), kPERF_STATE_IBOOT + 1);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(2), kPERF_STATE_IBOOT + 2);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(3), kPERF_STATE_IBOOT + 3);
#endif
/* Change all the clocks to something safe */
clocks_quiesce_internal();
#if APPLICATION_IBOOT && !SUPPORT_FPGA
// We must be running at Vnom or greater at this point. Move to the fast EMA bank
// so we can update the incorrect reset values in the slow bank. The fast bank is
// safe as long as we stay above Vmin.
rPMGR_EMA_CTL_CPU = rPMGR_EMA_CTL_CPU_SEL;
while (rPMGR_EMA_CTL_CPU & rPMGR_EMA_CTL_CPU_SPIN) ;
rPMGR_EMA_CTL_SOC = rPMGR_EMA_CTL_SOC_SEL;
while (rPMGR_EMA_CTL_SOC & rPMGR_EMA_CTL_SOC_SPIN) ;
// Fix the busted defaults in bank 0
rPMGR_SRAM_EMA_B0_Pn_LO(EMA_MCU) = 0x51b4a; /* rdar://problem/7633460 */
rPMGR_SRAM_EMA_B0_Pn_HI(EMA_DISP) = 0x32176; /* rdar://problem/7709646 */
#endif /* APPLICATION_IBOOT */
clks[PMGR_CLK_OSC] = OSC_FREQ;
#ifdef PLL0_T
set_pll(0, PLL0_P, PLL0_M, PLL0_S, PLL0_V);
#endif
#ifdef PLL1_T
set_pll(1, PLL1_P, PLL1_M, PLL1_S, PLL1_V);
#endif
#ifdef PLL2_T
set_pll(2, PLL2_P, PLL2_M, PLL2_S, PLL2_V);
#endif
#ifdef PLL3_T
set_pll(3, PLL3_P, PLL3_M, PLL3_S, PLL3_V);
#endif
#ifdef PLL4_T
set_pll(4, PLL4_P, PLL4_M, PLL4_S, PLL4_V);
#endif
#ifdef PLL5_T
set_pll(5, PLL5_P, PLL5_M, PLL5_S, PLL5_V);
#endif
#ifdef PLLUSB_T
set_pll(6, PLLUSB_P, PLLUSB_M, PLLUSB_S, PLLUSB_V);
#endif
// Use get_pll() to establish the frequencies (unconfigured PLLs will bypass OSC)
for (cnt = 0; cnt < 7; cnt++) plls[cnt] = get_pll(cnt);
// perf_div needs to be established before touching PMGR_CPU_CLK_CFG
perf_level = kPerformanceLow;
perf_div = perf_levels[perf_level].perf_div;
// Open the active PLL gates
rPMGR_PLL_GATES = PLL_GATES_ACTIVE;
// Set all clock dividers to their active values
// Start with CPU then work backwards
for (cnt = 0; cnt < PMGR_CLK_CFG_COUNT; cnt++) {
reg = PMGR_CLK_CFG_COUNT - cnt;
if (reg == PMGR_CLK_CFG_COUNT) reg = 0;
// Take care of managed clocks before predivs
if (reg == PMGR_CLK_NUM(MANAGED0))
update_perf_state(kPerformanceLow);
val = clk_divs_active[reg];
// Factor perf_div into PMGR_CPU_CLK_CFG
if (reg == PMGR_CLK_NUM(CPU)) {
cpu_div = val & rPMGR_CLK_CFG_DIV_MASK;
val &= ~rPMGR_CLK_CFG_DIV_MASK;
val |= cpu_div * perf_div;
}
clkcfgs[reg] = val;
// Sleep clock needs special attention: <rdar://problem/7556576>
// instead, we just make sure not to disable it.
while (clkcfgs[reg] & rPMGR_CLK_CFG_PENDING);
}
clocks_get_frequencies();
return 0;
}
static void update_perf_state(u_int32_t new_perf_level)
{
u_int32_t val, cpu_div;
/* Change the CPU speed (factor old perf_div out, multiple new one in) */
if (perf_levels[new_perf_level].perf_div != perf_div) {
val = rPMGR_CPU_CLK_CFG;
cpu_div = val & rPMGR_CLK_CFG_DIV_MASK;
cpu_div = (cpu_div / perf_div) * perf_levels[new_perf_level].perf_div;
val = (val & ~rPMGR_CLK_CFG_DIV_MASK) | cpu_div;
rPMGR_CPU_CLK_CFG = val;
while (rPMGR_CPU_CLK_CFG & rPMGR_CLK_CFG_PENDING);
perf_div = perf_levels[new_perf_level].perf_div;
}
/* Write the new select value */
rPMGR_PERF_STATE_CTL = PMGR_PERF_STATE_SEL(perf_levels[new_perf_level].perf_state);
/* Spin while any pending bits are asserted */
while (rPMGR_PERF_STATE_CTL & PMGR_PERF_STATE_PENDING);
}
void clocks_quiesce(void)
{
/* mcu_clk will be changed to bypass clock */
clks[PMGR_CLK_MCU] = OSC_FREQ;
/* Change all the clocks to something safe */
clocks_quiesce_internal();
/* effectively full performance */
perf_level = kPerformanceHigh;
perf_div = perf_levels[kPerformanceHigh].perf_div;
}
static void clock_update_range(u_int32_t first, u_int32_t last, u_int32_t clkdata[])
{
volatile u_int32_t *clkcfgs = PMGR_FIRST_CLK_CFG;
u_int32_t val, reg;
reg = first;
while (reg <= last) {
val = clkdata[reg];
clkcfgs[reg] = val;
while (clkcfgs[reg] & rPMGR_CLK_CFG_PENDING);
reg++;
}
}
static void clocks_quiesce_internal(void)
{
u_int64_t devices[2];
// Critical: Debug, AIC, DWI, GPIO, AUDIO, UPERF, CDMA, CDIO,
// MCU, L2RAM, SCU, CPU0
devices[0] = 0x000010005800005DULL;
devices[1] = 0x00000000001D0000ULL;
// Turn on critical device clocks
clocks_set_gates(devices, true);
// Turn off non-critical device clocks
clocks_set_gates(devices, false);
// Simplified from PMGR Spec 1.16 Section 3.13.6 (plus changes from Erik)
// Reset top-level dividers to bypass
clock_update_range(PMGR_CLK_NUM(PCLK1), PMGR_CLK_NUM(PREDIV6), clk_divs_bypass);
clock_update_range(PMGR_CLK_NUM(VID1), PMGR_CLK_NUM(VID1), clk_divs_bypass);
#if APPLICATION_IBOOT
// Prepare to move memory to bypass clock (ensure not high frequency, enable DLL force mode)
rPMGR_PERF_STATE_CTL = PMGR_PERF_STATE_SEL(perf_levels[kPerformanceMedium].perf_state);
while (rPMGR_PERF_STATE_CTL & PMGR_PERF_STATE_PENDING);
miu_bypass_prep();
#endif
// Reset managed clocks and mcu, venc_mtx
rPMGR_PERF_STATE_CTL = PMGR_PERF_STATE_SEL(kPERF_STATE_BYPASS);
while (rPMGR_PERF_STATE_CTL & PMGR_PERF_STATE_PENDING);
// Reset PLLs and Doubler
rPMGR_PLL0_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLL1_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLL2_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLL3_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLL4_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLL5_CTL = rPMGR_PLL_EXT_BYPASS;
rPMGR_PLLUSB_CTL = rPMGR_PLL_EXT_BYPASS;
#if !SUPPORT_FPGA
while (!(rPMGR_PLL0_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLL1_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLL2_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLL3_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLL4_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLL5_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
while (!(rPMGR_PLLUSB_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
#endif
rPMGR_DOUBLER_CTL = rPMGR_PLL_EXT_BYPASS;
while (!(rPMGR_DOUBLER_DEBUG & rPMGR_PLL_DEBUG_BYP_ENABLED)) ;
// Open the PLL Gates
rPMGR_PLL_GATES = (1 << 5) | (1 << 3) | (1 << 2);
// Reset the lower-level clocks
clock_update_range(PMGR_CLK_NUM(MANAGED0), PMGR_CLK_NUM(SLV_BUS), clk_divs_bypass);
// Reset the CPU clocks
clock_update_range(PMGR_CLK_NUM(CPU), PMGR_CLK_NUM(MCU), clk_divs_bypass);
}
u_int32_t clocks_set_performance(u_int32_t performance_level)
{
u_int32_t old_perf_level = perf_level;
update_perf_state(performance_level);
perf_level = performance_level;
return old_perf_level;
}
void clock_get_frequencies(u_int32_t *clocks, u_int32_t count)
{
u_int32_t cnt = PMGR_CLK_COUNT;
if (cnt > count) cnt = count;
memcpy(clocks, clks, cnt * sizeof(u_int32_t));
}
u_int32_t clock_get_frequency(int clock)
{
switch (clock) {
case CLK_CPU:
case CLK_FCLK:
return clks[PMGR_CLK_CPU];
case CLK_ACLK:
case CLK_MEM:
return clks[PMGR_CLK_MCU];
case CLK_HCLK:
case CLK_BUS:
return clks[PMGR_CLK_PIO];
case CLK_PERIPH:
case CLK_PCLK:
return clks[PMGR_CLK_PCLK0];
case CLK_FMI:
return clks[PMGR_CLK_PCLK1];
case CLK_NCLK:
case CLK_FIXED:
case CLK_TIMEBASE:
return clks[PMGR_CLK_OSC];
case CLK_USBPHYCLK:
#if SUPPORT_FPGA
return clks[PMGR_CLK_USBPHY]; /* The reference is special on FPGA */
#else
return clks[PMGR_CLK_OSC]; /* This is ref_24_clk, not usb_phy_clk */
#endif
case CLK_NCOREF:
return clks[PMGR_CLK_NCO_REF0];
case CLK_VCLK0:
return clks[PMGR_CLK_VID0];
case CLK_I2C0:
case CLK_I2C1:
case CLK_I2C2:
return clks[PMGR_CLK_I2C];
case CLK_MCLK:
default:
return 0;
}
}
void clock_set_frequency(int clock, u_int32_t divider, u_int32_t pll_p, u_int32_t pll_m, u_int32_t pll_s, u_int32_t pll_t)
{
switch (clock) {
case CLK_VCLK0:
/* XXX */
break;
default:
break;
}
}
void clock_gate(int device, bool enable)
{
volatile u_int32_t *reg = PMGR_FIRST_PS + device;
if (reg > PMGR_LAST_PS) return;
// Set the PS field to the requested level
if (enable) *reg |= 0xF;
else *reg &= ~0xF;
// Wait for the PS and ACTUAL_PS fields to be equal
while ((*reg & 0xF) != ((*reg >> 4) & 0xF));
}
static void clocks_set_gates(u_int64_t *devices, bool enable)
{
u_int32_t dev, index;
volatile u_int32_t *devpss = PMGR_FIRST_PS;
u_int64_t mask = 1, devmask = 0;
for (dev = 0, index = -1; dev < PMGR_DEV_PS_COUNT; dev++, mask <<= 1) {
if ((dev % 64) == 0) {
devmask = devices[++index];
if (enable == false)
devmask ^= -1ULL;
mask = 1;
}
// Skip CPUs
if (dev < PMGR_PS_NUM(SCU)) continue;
if ((devmask & mask) != 0) {
if (enable) devpss[dev] |= 0xF;
else devpss[dev] &= ~0xF;
// Wait for the PS and ACTUAL_PS fields to be equal
while ((devpss[dev] & 0xF) != ((devpss[dev] >> 4) & 0xF));
}
}
}
void platform_diag_gate_clocks(void)
{
}
void platform_system_reset(bool panic)
{
#if WITH_BOOT_STAGE
if (!panic) boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
// Use WDOG pin to cause a PMU reset
gpio_configure_out(GPIO_SYSTEM_RESET, 1);
while (1);
}
void platform_reset(bool panic)
{
#if WITH_BOOT_STAGE
if (!panic) boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
wdt_chip_reset();
while (1);
}
void platform_watchdog_tickle(void)
{
// Varies by target. This layer between is necessary so that
// we don't go straight from generic code to target.
target_watchdog_tickle();
}
static const u_int32_t divider_slot_table[8 * 2] = {
0x00000000, 0,
0x0000001F, 0,
0x000003E0, 5,
0x00007C00, 10,
0x000F8000, 15,
0x00001F00, 8,
0x001F0000, 16,
0x1F000000, 24
};
static void clocks_get_frequencies(void)
{
#if SUPPORT_FPGA
u_int32_t cnt;
u_int32_t freq = OSC_FREQ;
for (cnt = 0; cnt < PMGR_CLK_COUNT; cnt++)
clks[cnt] = freq;
clks[PMGR_CLK_CPU] = 15000000;
clks[PMGR_CLK_MCU] = 10000000;
clks[PMGR_CLK_MCU_FIXED]= 10000000;
clks[PMGR_CLK_USBPHY] = 12000000;
// keep compiler happy
cnt = (u_int32_t)clk_parents;
cnt = (u_int32_t)divider_slot_table;
#else
volatile u_int32_t *reg;
u_int32_t cnt, val, src_shift, parent_idx, slot, mask, shift, divider, perf_div_tmp;
u_int64_t freq;
for (cnt = 0; cnt < PMGR_CLK_COUNT; cnt++) {
reg = clk_parents[cnt].divider_reg;
if (reg == 0) continue;
switch (cnt) {
case PMGR_CLK_MANAGED0 :
src_shift = 5;
slot = 1;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[0] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MANAGED1 :
src_shift = 13;
slot = 5;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[0] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MANAGED2 :
src_shift = 21;
slot = 6;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[0] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MANAGED3 :
src_shift = 29;
slot = 7;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[0] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MANAGED4 :
src_shift = 5;
slot = 1;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[1] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MANAGED5 :
src_shift = 13;
slot = 5;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[2] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_AES_CORE :
src_shift = 21;
slot = 1;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[2] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MCU :
src_shift = 32;
slot = 5;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[1] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_MCU_FIXED :
src_shift = 21;
slot = 6;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[1] & ~rPMGR_CLK_CFG_ENABLE);
break;
case PMGR_CLK_VENC_MTX :
src_shift = 5;
slot = 1;
val = (*reg & rPMGR_CLK_CFG_ENABLE) | (perf_state_active[2] & ~rPMGR_CLK_CFG_ENABLE);
break;
default :
src_shift = 28;
slot = clk_parents[cnt].divider_slot;
val = *reg;
break;
}
if ((val & rPMGR_CLK_CFG_ENABLE) == 0) continue;
parent_idx = clk_parents[cnt].parents[(val >> src_shift) & 3];
freq = clks[parent_idx];
if ((cnt == PMGR_CLK_DOUBLER) && !(val & rPMGR_DOUBLER_EXT_BYPASS))
freq *= 2;
if (slot != 0) {
mask = divider_slot_table[slot * 2];
shift = divider_slot_table[slot * 2 + 1];
divider = (val & mask) >> shift;
if (divider == 0) continue;
switch (cnt) {
case PMGR_CLK_CPU : perf_div_tmp = perf_div; break;
default : perf_div_tmp = 1; break;
}
freq *= perf_div_tmp;
freq /= divider;
}
clks[cnt] = freq;
}
#endif
}
static u_int32_t get_pll(int pll)
{
u_int32_t pllctl;
u_int64_t freq = 0;
switch (pll) {
case 0: pllctl = rPMGR_PLL0_CTL; break;
case 1: pllctl = rPMGR_PLL1_CTL; break;
case 2: pllctl = rPMGR_PLL2_CTL; break;
case 3: pllctl = rPMGR_PLL3_CTL; break;
case 4: pllctl = rPMGR_PLL4_CTL; break;
case 5: pllctl = rPMGR_PLLUSB_CTL; break;
default: goto exit; break;
}
if ((pllctl & rPMGR_PLL_ENABLE) == 0) goto exit;
if ((pllctl & (rPMGR_PLL_EXT_BYPASS | rPMGR_PLL_BYPASS))) {
freq = OSC_FREQ;
} else {
freq = OSC_FREQ * 2;
freq *= (pllctl >> 3) & 0x3FF; // *M
freq /= (pllctl >> 14) & 0x3F; // /P
freq /= 1 << ((pllctl >> 0) & 0x07); // /2^S
}
exit:
return freq;
}
static void set_pll(int pll, u_int32_t p, u_int32_t m, u_int32_t s, u_int32_t vco)
{
volatile u_int32_t *pllctl, *pllparam;
u_int32_t afc;
switch (pll) {
case 0: pllctl = &rPMGR_PLL0_CTL; pllparam = &rPMGR_PLL0_PARAM; break;
case 1: pllctl = &rPMGR_PLL1_CTL; pllparam = &rPMGR_PLL1_PARAM; break;
case 2: pllctl = &rPMGR_PLL2_CTL; pllparam = &rPMGR_PLL2_PARAM; break;
case 3: pllctl = &rPMGR_PLL3_CTL; pllparam = &rPMGR_PLL3_PARAM; break;
case 4: pllctl = &rPMGR_PLL4_CTL; pllparam = &rPMGR_PLL4_PARAM; break;
case 5: pllctl = &rPMGR_PLL5_CTL; pllparam = &rPMGR_PLL5_PARAM; break;
case 6: pllctl = &rPMGR_PLLUSB_CTL; pllparam = &rPMGR_PLLUSB_PARAM; break;
default: return; break;
}
// Find the AFC setting for the desired VCO frequency
afc = 13;
if (vco < 1100000000UL) afc = 5;
if (vco > 1500000000UL) afc = 28;
// Set the default lock time (2400 cycles), and disable AFC and use EXT AFC
*pllparam = rPMGR_PARAM_EXT_AFC(afc) | rPMGR_PARAM_LOCK_TIME(2400);
*pllctl = (rPMGR_PLL_ENABLE | rPMGR_PLL_LOAD |
rPMGR_PLL_P(p) | rPMGR_PLL_M(m) | rPMGR_PLL_S(s));
#if !SUPPORT_FPGA
while ((*pllctl & rPMGR_PLL_REAL_LOCK) == 0); // wait for pll to lock
#endif /* ! SUPPORT_FPGA */
}
#endif // !APPLICATION_EMBEDDEDIOP
void clock_reset_device(int device)
{
volatile u_int32_t *reg = PMGR_FIRST_PS + device;
switch (device) {
case CLK_CPU1 :
case CLK_FMI0 :
case CLK_FMI1 :
case CLK_FMI2 :
case CLK_FMI3 :
case CLK_IOP :
case CLK_SDIO :
*reg |= rPMGR_PS_RESET;
spin(1);
*reg &= ~rPMGR_PS_RESET;
break;
case CLK_MCU:
// Make sure resets are asserted/deasserted to gfx0, gfx1, hperfrt, hperfnrt
// <rdar://problem/7269959>
rPMGR_GFX_SYS_PS |= rPMGR_PS_RESET;
rPMGR_GFX_CORES_PS |= rPMGR_PS_RESET;
rPMGR_HPERFNRT_PS |= rPMGR_PS_RESET;
rPMGR_HPERFRT_PS |= rPMGR_PS_RESET;
*reg |= rPMGR_PS_RESET;
spin(1);
*reg &= ~rPMGR_PS_RESET;
rPMGR_GFX_SYS_PS &= ~rPMGR_PS_RESET;
rPMGR_GFX_CORES_PS &= ~rPMGR_PS_RESET;
rPMGR_HPERFNRT_PS &= ~rPMGR_PS_RESET;
rPMGR_HPERFRT_PS &= ~rPMGR_PS_RESET;
break;
default :
break;
}
}
#if WITH_DEVICETREE
void pmgr_update_device_tree(DTNode *pmgr_node)
{
u_int32_t propSize, perf_state_config;
char *propName;
void *propData;
// Get the PERF_STATE configuration generated at hardware init
perf_state_config = rPMGR_SCRATCH1;
if (perf_state_config == 0) return;
// Fill in the firmware-v-perf-states property
propName = "firmware-v-perf-states";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (2 * sizeof(u_int32_t))) {
panic("pmgr property firmware-v-perf-states is the wrong size");
}
// Voltage states are in reverse order
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(1), perf_state_config);
((u_int32_t *)propData)[1] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(0), perf_state_config);
}
// Fill in the firmware-p-perf-state property
propName = "firmware-p-perf-state";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (1 * sizeof(u_int32_t))) {
panic("pmgr property firmware-p-perf-states is the wrong size");
}
// There is only one Frequency Managed / Performance state
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_P, perf_state_config);
}
// Fill in the firmware-m-perf-states property
propName = "firmware-m-perf-states";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (4 * sizeof(u_int32_t))) {
panic("pmgr property firmware-m-perf-states is the wrong size");
}
// Memory states are in the same order
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(0), perf_state_config);
((u_int32_t *)propData)[1] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(1), perf_state_config);
((u_int32_t *)propData)[2] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(2), perf_state_config);
((u_int32_t *)propData)[3] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(3), perf_state_config);
}
}
#endif
void init_thermal_sensors(void)
{
// Read fused temperature values to calculate slope and offset to be stored
// into rPMGR_THERMAL_CTL2, which is later used to compute real die temperature value.
u_int32_t fusedTempValueAt70 = chipid_get_fused_thermal_70C();
u_int32_t fusedTempValueAt25 = chipid_get_fused_thermal_25C();
u_int32_t tempSlope = 0x100;
// Grab the 4 bit fuse revision
u_int32_t fuseRevision = chipid_get_fuse_revision();
// Should probably make sure we don't divde by zero.
if (fusedTempValueAt25 == fusedTempValueAt70) {
fusedTempValueAt70 = 70;
fusedTempValueAt25 = 25;
dprintf(DEBUG_INFO, "Invalid fuse values\n");
}
// 0 means 1 pt calibration fused incorrectly or no calibration. Proto 1 & 2
// 1 means 1 pt calibration correct, default slope. EVT units.
// 2+ future release, reserved for 2 pt calibration.
if (0 == fuseRevision) {
fusedTempValueAt25 = fusedTempValueAt25 >> 1;
fusedTempValueAt25 = ((fusedTempValueAt70 & 0x1) << 7) | fusedTempValueAt25;
} else if (fuseRevision > 1) {
// 45 = 70 - 25
tempSlope = (45*256) / (fusedTempValueAt70 - fusedTempValueAt25);
}
// Set the PWDN mode on to save power.
rPMGR_THERMAL_CTL0 |= 0x00000004;
// Configure PWDN time.
rPMGR_THERMAL_CTL1 |= 0x00005B00;
// Calculate the real offset.
u_int32_t realOffset = 25 - ((tempSlope * fusedTempValueAt25) / (tempSlope==0x100 ? 1:256));
// Bits 23 16
// Temp_OFFSET => [8 bit signed integer]
rPMGR_THERMAL_CTL2 = (realOffset & 0xFF) << 16;
// Bits 9 0
// TEMP_SLOPE => [2 bit integer| 8 bit decimal]
rPMGR_THERMAL_CTL2 |= tempSlope & 0x3FF;
}