iBoot/platform/s5l8955x/pmgr/pmgr.c

1260 lines
47 KiB
C

/*
* Copyright (C) 2010-2014 Apple Inc. All rights reserved.
*
* This document is the property of Apple Inc.
* It is considered confidential and proprietary.
*
* This document may not be reproduced or transmitted in any form,
* in whole or in part, without the express written permission of
* Apple Inc.
*/
#include <debug.h>
#include <drivers/power.h>
#include <platform.h>
#include <platform/clocks.h>
#include <platform/gpio.h>
#include <platform/gpiodef.h>
#include <platform/power.h>
#include <platform/timer.h>
#include <platform/soc/chipid.h>
#include <platform/soc/hwclocks.h>
#include <platform/soc/miu.h>
#include <platform/soc/pmgr.h>
#include <sys/boot.h>
#include <target.h>
#if !APPLICATION_EMBEDDEDIOP
#define PLL_VCO_TARGET(pllx) (2ULL * pllx##_O * ((pllx##_M) + 1) / ((pllx##_P) + 1))
#define PLL_FREQ_TARGET(pllx) (2ULL * pllx##_O * ((pllx##_M) + 1) / ((pllx##_P) + 1) / ((pllx##_S) + 1))
static u_int32_t clk_divs_bypass[PMGR_CLK_CFG_COUNT] = {
0x80000001, 0x00000000, 0x00000000, 0x00000000, // 0x140: cpu, rsvd, rsvd, rsvd
0x80000001, 0x80000001, 0x80000001, 0x00000000, // 0x150: pll2_gate, pll4_gate, pll5_gate, rsvd
0x00000000, 0x80000001, 0x80000001, 0x80000001, // 0x160: rsvd, mcu_fixed, mcu, pclk1
0x80000001, 0x00000000, 0x00000000, 0x00000000, // 0x170: gfx, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x180: rsvd, rsvd, rsvd, rsvd
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x190: prediv0, prediv1, prediv2, prediv3
0x80000001, 0x80000001, 0x00000000, 0x00000000, // 0x1A0: prediv4, prediv5, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x1B0: rsvd, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x1C0: rsvd, rsvd, rsvd, rsvd
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x1D0: venc_mtx, venc, hperf_rt, gfx_sys
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x1E0: hperf_nrt, nrt_mem, vdec, isp
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x1F0: iop, cdio, lperfs, pclk0
0x80000001, 0x80000001, 0x80000001, 0x00000000, // 0x200: pclk2, pclk3, aes, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x210: rsvd, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x220: rsvd, rsvd, rsvd, rsvd
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x230: medium0, medium1, vid0, vid1
0x80000001, 0x80000001, 0x80000001, 0x00000000, // 0x240: dispout, i2c, sdio, rsvd
0x80000001, 0x00000000, 0x00000000, 0x00000000, // 0x250: audio, rsvd, rsvd, rsvd
0x80000001, 0x80000001, 0x82000001, 0x80000001, // 0x260: uperf, debug, scc_pwr, scc_dma
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x270: spi0, spi1, spi2, spi3
0x80000001, 0x80000001, 0x82000001, 0x82000001, // 0x280: spi4, slow, sleep, usb_phy0
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x290: usbohci, usb12, nco_ref0, nco_ref1
0x80000001, 0x82000001, 0x82000001, // 0x2A0: nco_ref2, usb_phy1, usb_ehci_free
};
struct dvfm_state {
u_int32_t pll_pms;
u_int16_t clk_src;
u_int8_t cpu_vi;
u_int8_t ram_vi;
};
static const struct dvfm_state dvfm_state_bypass = {
0, // no PLL
0, // use OSC
0, // no cpu voltage
0 // no ram voltage
};
static u_int32_t perf_state_bypass[1 * 5] = {
0x01000101, 0x01010101, 0x01000301, 0x01010101, 0x00000100, // defaults, slow mcu_cfg, no voltage change
};
struct perf_info {
u_int8_t dvfm_state;
u_int8_t perf_state;
};
#if APPLICATION_IBOOT
#ifndef TARGET_PREDIV5_DIV
#define TARGET_PREDIV5_DIV 5
#endif
#ifndef TARGET_VID0_DIV
#define TARGET_VID0_DIV 1
#endif
#define PLL2 2
#define PLL2_O OSC_FREQ
#define PLL2_P 2
#define PLL2_M 49
#define PLL2_S 0
#define PLL2_V PLL_VCO_TARGET(PLL2)
#define PLL2_T PLL_FREQ_TARGET(PLL2)
#define PLL3 3
#define PLL3_O OSC_FREQ
#define PLL3_P 1
#define PLL3_M 86
#define PLL3_S 1
#define PLL3_V PLL_VCO_TARGET(PLL3)
#define PLL3_T PLL_FREQ_TARGET(PLL3)
#define PLL4 4
#define PLL4_O OSC_FREQ
#define PLL4_P 3
#define PLL4_M 170
#define PLL4_S 0
#define PLL4_V PLL_VCO_TARGET(PLL4)
#define PLL4_T PLL_FREQ_TARGET(PLL4)
#define PLL5 5
#define PLL5_O OSC_FREQ
#define PLL5_P 2
#define PLL5_M 96
#define PLL5_S 1
#define PLL5_V PLL_VCO_TARGET(PLL5)
#define PLL5_T PLL_FREQ_TARGET(PLL5)
#define PLL6 6
#define PLL6_O OSC_FREQ
#define PLL6_P 0
#define PLL6_M 54
#define PLL6_S 0
#define PLL6_V PLL_VCO_TARGET(PLL6)
#define PLL6_T PLL_FREQ_TARGET(PLL6)
#define PLLUSB USB
#define PLLUSB_O OSC_FREQ
#define PLLUSB_P 0
#define PLLUSB_M 19
#define PLLUSB_S 0
#define PLLUSB_V PLL_VCO_TARGET(PLLUSB)
#define PLLUSB_T PLL_FREQ_TARGET(PLLUSB)
#define D_PREDIV5 (0x90000000 | (TARGET_PREDIV5_DIV))
#define D_VID0 (0x90000000 | (TARGET_VID0_DIV))
#define D_DISABLED (0x00000001)
#define D_RESERVED (0x00000000)
// Clocks configured with this value are managed by the perf table
// This value just enables the clock and puts in a dummy divider
#define D_PRF_TBL (0x80000001)
static const u_int32_t clk_divs_active[PMGR_CLK_CFG_COUNT] = {
0x80000001, D_RESERVED, D_RESERVED, D_RESERVED, // 0x140: cpu, rsvd, rsvd, rsvd
D_DISABLED, 0x80000001, 0x80000001, D_RESERVED, // 0x150: pll2_gate, pll4_gate, pll5_gate, rsvd
D_RESERVED, D_PRF_TBL, D_PRF_TBL, 0xB0000004, // 0x160: rsvd, mcu_fixed, mcu, pclk1
D_PRF_TBL, D_RESERVED, D_RESERVED, D_RESERVED, // 0x170: gfx, rsvd, rsvd, rsvd
D_RESERVED, D_RESERVED, D_RESERVED, D_RESERVED, // 0x180: rsvd, rsvd, rsvd, rsvd
0x90000005, 0x90000004, 0x90000003, 0xA0000001, // 0x190: prediv0, prediv1, prediv2, prediv3
D_DISABLED, D_PREDIV5, D_RESERVED, D_RESERVED, // 0x1A0: prediv4, prediv5, rsvd, rsvd
D_RESERVED, D_RESERVED, D_RESERVED, D_RESERVED, // 0x1B0: rsvd, rsvd, rsvd, rsvd
D_RESERVED, D_RESERVED, D_RESERVED, D_RESERVED, // 0x1C0: rsvd, rsvd, rsvd, rsvd
D_PRF_TBL, 0x80000002, D_PRF_TBL, D_PRF_TBL, // 0x1D0: venc_mtx, venc, hperf_rt, gfx_sys
D_PRF_TBL, D_PRF_TBL, D_PRF_TBL, D_PRF_TBL, // 0x1E0: hperf_nrt, nrt_mem, vdec, isp
D_PRF_TBL, D_PRF_TBL, D_PRF_TBL, D_PRF_TBL, // 0x1F0: iop, cdio, lperfs, pclk0
D_PRF_TBL, D_PRF_TBL, D_PRF_TBL, D_RESERVED, // 0x200: pclk2, pclk3, aes, rsvd
D_RESERVED, D_RESERVED, D_RESERVED, D_RESERVED, // 0x210: rsvd, rsvd, rsvd, rsvd
D_RESERVED, D_RESERVED, D_RESERVED, D_RESERVED, // 0x220: rsvd, rsvd, rsvd, rsvd
D_DISABLED, 0x8000000A, D_VID0, 0x90000013, // 0x230: medium0, medium1, vid0, vid1
0x8000000A, 0xB0000001, D_DISABLED, D_RESERVED, // 0x240: dispout, i2c, sdio, rsvd
0x80000001, D_RESERVED, D_RESERVED, D_RESERVED, // 0x250: audio, rsvd, rsvd, rsvd
0xA0000007, 0xA0000002, 0x80000001, 0xA000001F, // 0x260: uperf, debug, scc_pwr, scc_dma
0xB0000001, 0xB0000001, 0xB0000001, 0xB0000001, // 0x270: spi0, spi1, spi2, spi3
0xB0000001, 0x80000018, 0x80000014, 0x80000001, // 0x280: spi4, slow, sleep, usb_phy0
0x80000001, 0x80000002, 0xA0000001, D_DISABLED, // 0x290: usbohci, usb12, nco_ref0, nco_ref1
D_DISABLED, 0x80000001, 0x80000001, // 0x2A0: nco_ref2, usb_phy1, usb_ehci_free
};
#define DFVM_STATE_ACTIVE kDVFM_STATE_IBOOT
static const struct dvfm_state dvfm_state_active[] = {
{
PMGR_PLL_P(0) | PMGR_PLL_M(24) | PMGR_PLL_S(0), // PLL = 600MHz
1, // Use PLL0
0, // Use CPU voltage 0
CHIPID_RAM_VOLTAGE_LOW // Use low RAM voltage
},
{
PMGR_PLL_P(0) | PMGR_PLL_M(41) | PMGR_PLL_S(0), // PLL = 1008MHz
1, // Use PLL0
1, // Use CPU voltage 1
CHIPID_RAM_VOLTAGE_HIGH // Use high RAM voltage
},
{
PMGR_PLL_P(0) | PMGR_PLL_M(49) | PMGR_PLL_S(0), // PLL = 1200MHz
1, // Use PLL0
2, // Use CPU voltage 2
CHIPID_RAM_VOLTAGE_HIGH // Use high RAM voltage
},
{
PMGR_PLL_P(0) | PMGR_PLL_M(57) | PMGR_PLL_S(0), // PLL = 1392MHz
1, // Use PLL0
4, // Use CPU voltage 4
CHIPID_RAM_VOLTAGE_HIGH // Use high RAM voltage
}
};
#define PERF_STATE_ACTIVE kPERF_STATE_IBOOT
static const u_int32_t perf_state_active[kPERF_STATE_IBOOT_CNT * 5] = {
#if ! SUPPORT_FPGA
0x21004441, 0x02012101, 0x21004041, 0x41010121, CHIPID_SOC_VOLTAGE_MED, // divide by 1, mcu_cfg=0, med voltage
0x01004541, 0x23420101, 0x61004121, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 2, mcu_cfg=1, low voltage
0x01004541, 0x26440201, 0x61004222, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 4, mcu_cfg=2, low voltage
0x01004541, 0x3f1f1f01, 0x61004328, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 31, mcu_cfg=3, low voltage
0x01004541, 0x23420101, 0x61004041, 0x41424242, CHIPID_SOC_VOLTAGE_MED, // divide by 4, mcu_cfg=0, med voltage
#else /* SUPPORT_FPGA */
0x21002441, 0x02012101, 0x21004041, 0x41010121, CHIPID_SOC_VOLTAGE_MED, // divide by 1, mcu_cfg=0, med voltage
0x01002541, 0x23420101, 0x41004121, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 2, mcu_cfg=1, low voltage
0x01002541, 0x26440201, 0x41004222, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 4, mcu_cfg=2, low voltage
0x01002541, 0x3f1f1f01, 0x41004328, 0x41424242, CHIPID_SOC_VOLTAGE_LOW, // divide by 31, mcu_cfg=3, low voltage
0x01002541, 0x23420101, 0x41004041, 0x41424242, CHIPID_SOC_VOLTAGE_MED, // divide by 4, mcu_cfg=0, med voltage
#endif /* ! SUPPORT_FPGA */
};
static const struct perf_info perf_levels[] = {
[kPerformanceHigh] = { kDVFM_STATE_IBOOT+0, kPERF_STATE_IBOOT+0 },
[kPerformanceMedium] = { kDVFM_STATE_IBOOT+0, kPERF_STATE_IBOOT+1 },
[kPerformanceLow] = { kDVFM_STATE_IBOOT+0, kPERF_STATE_IBOOT+2 },
[kPerformanceMemory] = { kDVFM_STATE_IBOOT+0, kPERF_STATE_IBOOT+4 },
};
#endif /* APPLICATION_IBOOT */
#if APPLICATION_SECUREROM
#define PLL4 4
#define PLL4_O OSC_FREQ
#define PLL4_P 3
#define PLL4_M 170
#define PLL4_S 3
#define PLL4_V PLL_VCO_TARGET(PLL4)
#define PLL4_T PLL_FREQ_TARGET(PLL4)
static const u_int32_t clk_divs_active[PMGR_CLK_CFG_COUNT] = {
0x80000001, 0x00000000, 0x00000000, 0x00000000, // 0x140: cpu, rsvd, rsvd, rsvd
0x00000001, 0x80000001, 0x00000001, 0x00000000, // 0x150: pll2_gate, pll4_gate, pll5_gate, rsvd
0x00000000, 0x80000001, 0x80000001, 0xB0000003, // 0x160: rsvd, mcu_fixed, mcu, pclk1
0x00000001, 0x00000000, 0x00000000, 0x00000000, // 0x170: gfx, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x180: rsvd, rsvd, rsvd, rsvd
0x90000004, 0x00000001, 0x00000001, 0x00000001, // 0x190: prediv0, prediv1, prediv2, prediv3
0x00000001, 0x00000001, 0x00000000, 0x00000000, // 0x1A0: prediv4, prediv5, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x1B0: rsvd, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x1C0: rsvd, rsvd, rsvd, rsvd
0x00000001, 0x00000001, 0x00000001, 0x00000001, // 0x1D0: venc_mtx, venc, hperf_rt, gfx_sys
0x00000001, 0x00000001, 0x00000001, 0x00000001, // 0x1E0: hperf_nrt, nrt_mem, vdec, isp
0x80000001, 0x80000001, 0x80000001, 0x80000001, // 0x1F0: iop, cdio, lperfs, pclk0
0x80000001, 0x80000001, 0x80000001, 0x00000000, // 0x200: pclk2, pclk3, aes, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x210: rsvd, rsvd, rsvd, rsvd
0x00000000, 0x00000000, 0x00000000, 0x00000000, // 0x220: rsvd, rsvd, rsvd, rsvd
0x00000001, 0x00000001, 0x00000001, 0x00000001, // 0x230: medium0, medium1, vid0, vid1
0x00000001, 0x00000001, 0x00000001, 0x00000000, // 0x240: dispout, i2c, sdio, rsvd
0x80000001, 0x00000000, 0x00000000, 0x00000000, // 0x250: audio, rsvd, rsvd, rsvd
0x80000002, 0xB0000001, 0x80000001, 0x80000006, // 0x260: uperf, debug, scc_pwr, scc_dma
0xB0000001, 0x00000001, 0x00000001, 0xB0000001, // 0x270: spi0, spi1, spi2, spi3
0x00000001, 0x80000018, 0x80000014, 0x80000001, // 0x280: spi4, slow, sleep, usb_phy0
0x00000001, 0x00000001, 0x00000001, 0x00000001, // 0x290: usbohci, usb12, nco_ref0, nco_ref1
0x00000001, 0x00000001, 0x00000001, // 0x2A0: nco_ref2, usb_phy1, usb_ehci_free
};
#define DFVM_STATE_ACTIVE kDVFM_STATE_SECUREROM
static const struct dvfm_state dvfm_state_active = {
PMGR_PLL_P(1) | PMGR_PLL_M(74) | PMGR_PLL_S(3), // PLL = 225MHz
1, // Use PLL0
0, // no cpu voltage
0 // no ram voltage
};
#define PERF_STATE_ACTIVE kPERF_STATE_SECUREROM
static const u_int32_t perf_state_active[1 * 5] = {
0x01000101, 0x01010101, 0x01000301, 0x01010101, 0x00000100, // defaults, slow mcu_cfg, no voltage change
};
static const struct perf_info perf_levels[] = {
[kPerformanceHigh] = { kDVFM_STATE_SECUREROM, kPERF_STATE_SECUREROM },
[kPerformanceMedium] = { kDVFM_STATE_SECUREROM, kPERF_STATE_SECUREROM },
[kPerformanceLow] = { kDVFM_STATE_SECUREROM, kPERF_STATE_SECUREROM },
[kPerformanceMemory] = { kDVFM_STATE_SECUREROM, kPERF_STATE_SECUREROM },
};
#endif /* APPLICATION_SECUREROM */
/* current clock speeds */
static u_int32_t cpu_clks[kDVFM_STATE_COUNT];
static u_int32_t clks[PMGR_CLK_COUNT];
static u_int32_t *plls = &clks[PMGR_CLK_PLL0];
static u_int32_t perf_level;
struct clk_parent {
volatile u_int32_t *divider_reg;
u_int32_t divider_type;
u_int32_t divider_offset;
u_int8_t parents[4];
};
/* Based on PMGR 1.10 */
static const struct clk_parent clk_parents[PMGR_CLK_COUNT] = {
[PMGR_CLK_OSC] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL0] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL1] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL2] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL3] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL4] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL5] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLL6] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_PLLUSB] = { 0, 0, 0x00, { 0, 0, 0, 0 } },
[PMGR_CLK_DOUBLER] = { &rPMGR_DOUBLER_CTL, 0, 0x00, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_PLL2_GATED] = { &rPMGR_PLL2_GATE_CFG, 0, 0x00, { PMGR_CLK_PLL2, 0, 0, 0, } },
[PMGR_CLK_PLL4_GATED] = { &rPMGR_PLL4_GATE_CFG, 0, 0x00, { PMGR_CLK_PLL4, 0, 0, 0, } },
[PMGR_CLK_PLL5_GATED] = { &rPMGR_PLL5_GATE_CFG, 0, 0x00, { PMGR_CLK_PLL5, 0, 0, 0, } },
[PMGR_CLK_MCU_FIXED] = { &rPMGR_MCU_FIXED_CLK_CFG, 2, 0x09, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL4_GATED } },
[PMGR_CLK_MCU] = { &rPMGR_MCU_CLK_CFG, 3, 0x08, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL4_GATED } },
[PMGR_CLK_CPU] = { &rPMGR_CPU_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL0, PMGR_CLK_PLL1, PMGR_CLK_MCU } },
[PMGR_CLK_PREDIV0] = { &rPMGR_PREDIV0_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_PREDIV1] = { &rPMGR_PREDIV1_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_PREDIV2] = { &rPMGR_PREDIV2_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_PREDIV3] = { &rPMGR_PREDIV3_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_PREDIV4] = { &rPMGR_PREDIV4_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL5, PMGR_CLK_PLL6, PMGR_CLK_PLL3 } },
[PMGR_CLK_PREDIV5] = { &rPMGR_PREDIV5_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_GFX] = { &rPMGR_GFX_CLK_CFG, 3, 0x01, { PMGR_CLK_OSC, PMGR_CLK_PLL5, PMGR_CLK_PLL6, PMGR_CLK_PLL4 } },
[PMGR_CLK_GFX_SYS] = { &rPMGR_GFX_SYS_CLK_CFG, 3, 0x03, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_HPERFRT] = { &rPMGR_HPERFRT_CLK_CFG, 3, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_DISPOUT] = { &rPMGR_DISPOUT_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_VID0] = { &rPMGR_VID0_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV5, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_VID1] = { &rPMGR_VID1_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL4, PMGR_CLK_PLL5_GATED, PMGR_CLK_PLL2_GATED } },
[PMGR_CLK_HPERFNRT] = { &rPMGR_HPERFNRT_CLK_CFG, 3, 0x0D, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_NRT_MEM] = { &rPMGR_NRT_MEM_CLK_CFG, 3, 0x0C, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_VENC_MTX] = { &rPMGR_VENC_MTX_CLK_CFG, 3, 0x0B, { PMGR_CLK_PREDIV1, PMGR_CLK_PLLUSB, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_VENC] = { &rPMGR_VENC_CLK_CFG, 1, 0x00, { PMGR_CLK_VENC_MTX, 0, 0, 0 } },
[PMGR_CLK_VDEC] = { &rPMGR_VDEC_CLK_CFG, 3, 0x0E, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_ISP] = { &rPMGR_ISP_CLK_CFG, 3, 0x04, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_IOP] = { &rPMGR_IOP_CLK_CFG, 3, 0x05, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_CDIO] = { &rPMGR_CDIO_CLK_CFG, 3, 0x06, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_LPERFS] = { &rPMGR_LPERFS_CLK_CFG, 3, 0x07, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_PCLK0] = { &rPMGR_PCLK0_CLK_CFG, 0, 0x00, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_PCLK1] = { &rPMGR_PCLK1_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, PMGR_CLK_PLL2, PMGR_CLK_PLL3, PMGR_CLK_PLL4_GATED } },
[PMGR_CLK_PCLK2] = { &rPMGR_PCLK2_CLK_CFG, 0, 0x00, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_PCLK3] = { &rPMGR_PCLK3_CLK_CFG, 0, 0x00, { PMGR_CLK_LPERFS, 0, 0, 0 } },
[PMGR_CLK_AES] = { &rPMGR_AES_CLK_CFG, 3, 0x0F, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MEDIUM0] = { &rPMGR_MEDIUM0_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_MEDIUM1] = { &rPMGR_MEDIUM1_CLK_CFG, 1, 0x00, { PMGR_CLK_PLLUSB, 0, 0, 0 } },
[PMGR_CLK_I2C] = { &rPMGR_I2C_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV3, PMGR_CLK_OSC } },
[PMGR_CLK_SDIO] = { &rPMGR_SDIO_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_AUDIO] = { &rPMGR_AUDIO_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_UPERF] = { &rPMGR_UPERF_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_DEBUG] = { &rPMGR_DEBUG_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_OSC } },
[PMGR_CLK_SCC_PWR] = { &rPMGR_SCC_PWR_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_SCC_DMA] = { &rPMGR_SCC_DMA_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_SPI0] = { &rPMGR_SPI0_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI1] = { &rPMGR_SPI1_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI2] = { &rPMGR_SPI2_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI3] = { &rPMGR_SPI3_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SPI4] = { &rPMGR_SPI4_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM0, PMGR_CLK_MEDIUM1, 0, PMGR_CLK_OSC } },
[PMGR_CLK_SLOW] = { &rPMGR_SLOW_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_SLEEP] = { &rPMGR_SLEEP_CLK_CFG, 1, 0x00, { PMGR_CLK_SLOW, 0, 0, 0 } },
[PMGR_CLK_USB_PHY0] = { &rPMGR_USB_PHY0_CLK_CFG, 0, 0x00, { PMGR_CLK_PLLUSB, 0, 0, 0 } },
[PMGR_CLK_USBOHCI] = { &rPMGR_USBOHCI_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM1, PMGR_CLK_DOUBLER, 0, 0 } },
[PMGR_CLK_USB12] = { &rPMGR_USB12_CLK_CFG, 1, 0x00, { PMGR_CLK_OSC, 0, 0, 0 } },
[PMGR_CLK_NCO_REF0] = { &rPMGR_NCO_REF0_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_NCO_REF1] = { &rPMGR_NCO_REF1_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_NCO_REF2] = { &rPMGR_NCO_REF2_CLK_CFG, 1, 0x00, { PMGR_CLK_PREDIV0, PMGR_CLK_PREDIV1, PMGR_CLK_PREDIV2, PMGR_CLK_PREDIV3 } },
[PMGR_CLK_USB_PHY1] = { &rPMGR_USB_PHY1_CLK_CFG, 1, 0x00, { PMGR_CLK_PLLUSB, 0, 0, 0, } },
[PMGR_CLK_USB_EHCI_FREE]={ &rPMGR_USB_EHCI_FREE_CLK_CFG, 0, 0x00, { PMGR_CLK_MEDIUM1, PMGR_CLK_DOUBLER, 0, 0 } },
};
static void init_thermal_sensors(void);
static void clocks_get_frequencies(void);
static u_int32_t get_pll(int pll);
static void set_pll(int pll, u_int32_t p, u_int32_t m, u_int32_t s, u_int32_t v);
static void clocks_set_gates(u_int64_t *devices, bool enable);
static void clocks_quiesce_internal(void);
static void update_perf_state(u_int32_t new_perf_state);
static void wait_for_dev_ps_change(u_int32_t dev);
static void wait_for_pending_apsc_change(void);
static void wait_for_pending_clk_cfg_change(u_int32_t reg);
static void wait_for_pll_bypass_enabled(u_int32_t idx);
static void wait_for_pll_lock(u_int32_t idx);
static void wait_for_doubler_bypass_enabled(void);
void platform_power_init(void)
{
//#if 0 /* XXX Update for Bali. */
// Configure SCC CCXPWRCTRL to settings from H5P Tunables Revision 0.25
rSCC_CCXPWRCTRL = 0x88800000;
// Set Power Gating Parameters for all the power domains
// VDD_CPU RAMP_ALL time is larger then expected, rdar://problem/9376764
rPMGR_PWR_GATE_TIME_A(1) = (720 << 16); // CPU0
rPMGR_PWR_GATE_TIME_A(2) = (720 << 16); // CPU1
rPMGR_PWR_GATE_TIME_A(6) = (34 << 16) | (1 << 0); // IOP
rPMGR_PWR_GATE_TIME_B(6) = (20 << 26) | (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(7) = (147 << 16) | (2 << 0); // GFX
rPMGR_PWR_GATE_TIME_B(7) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(8) = (123 << 16) | (2 << 0); // HPERF-RT
rPMGR_PWR_GATE_TIME_B(8) = (2 << 16) | (2 << 8) | (9 << 0);
rPMGR_PWR_GATE_TIME_A(9) = (139 << 16) | (2 << 0); // ISP
rPMGR_PWR_GATE_TIME_B(9) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(10) = (94 << 16) | (2 << 0); // HPERF-NRT
rPMGR_PWR_GATE_TIME_B(10) = (2 << 16) | (4 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(11) = (70 << 16) | (1 << 0); // VDEC
rPMGR_PWR_GATE_TIME_B(11) = (2 << 16) | (2 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(12) = (107 << 16) | (2 << 0); // VENC
rPMGR_PWR_GATE_TIME_B(12) = (2 << 16) | (4 << 8) | (4 << 0);
rPMGR_PWR_GATE_TIME_A(13) = (29 << 16) | (2 << 0); // FMI
rPMGR_PWR_GATE_TIME_B(13) = (2 << 16) | (2 << 8) | (4 << 0);
//#endif
// Enable MCU_FIXED_CLK to be enabled/disabled based on request from MCU
rPMGR_ENABLE_CLK_GATE = (1 << 1);
#if APPLICATION_IBOOT
/* clear CPU1's reset; it will still be powered down */
clock_reset_device(CLK_CPU1);
init_thermal_sensors();
#endif
}
extern void aic_spin(u_int32_t usecs);
void platform_power_spin(u_int32_t usecs)
{
aic_spin(usecs);
}
int clocks_init(void)
{
#if APPLICATION_IBOOT && (PRODUCT_IBOOT || PRODUCT_IBEC)
u_int32_t cnt, tmp;
clks[PMGR_CLK_OSC] = OSC_FREQ;
for (cnt = 0; cnt < PMGR_PLL_COUNT; cnt++) plls[cnt] = get_pll(cnt);
// Find the perf_level using PERF_STATE_CTL
tmp = (rPMGR_PERF_STATE_CTL >> PMGR_PERF_STATE_SEL_SHIFT) & PMGR_PERF_STATE_SEL_MASK;
for (perf_level = kPerformanceHigh; perf_level < kPerformanceLow; perf_level++) {
if (perf_levels[perf_level].perf_state == tmp) break;
}
clocks_get_frequencies();
#endif /* APPLICATION_IBOOT && (PRODUCT_IBOOT || PRODUCT_IBEC) */
return 0;
}
/* clocks_set_default - called by SecureROM, LLB, iBSS main via
platform_init_setup_clocks, so the current state of the chip is
either POR, or whatever 'quiesce' did when leaving SecureROM. */
int clocks_set_default(void)
{
u_int32_t cnt, count, reg, val;
u_int32_t cpu_vid[kDVFM_STATE_COUNT], ram_vid[2], soc_vid[3];
volatile u_int32_t *clkcfgs = PMGR_FIRST_CLK_CFG;
clks[PMGR_CLK_OSC] = OSC_FREQ;
count = 0;
for (cnt = 0; cnt < kDVFM_STATE_COUNT; cnt++) {
cpu_vid[cnt] = 0;
}
ram_vid[0] = ram_vid[1] = 0;
soc_vid[0] = soc_vid[1] = soc_vid[2] = 0;
// Set up the bypass dvfm and performance states
rPMGR_DVFM_CFG0(kDVFM_STATE_BYPASS) = dvfm_state_bypass.pll_pms;
rPMGR_DVFM_CFG1(kDVFM_STATE_BYPASS) = dvfm_state_bypass.clk_src << PMGR_DVFM_CFG1_CLK_SRC_SHIFT;
rPMGR_DVFM_CFG2(kDVFM_STATE_BYPASS) = 0;
rPMGR_DVFM_CFG3(kDVFM_STATE_BYPASS) = 0;
rPMGR_DVFM_CFG4(kDVFM_STATE_BYPASS) = 0;
rPMGR_PERF_STATE_A(kPERF_STATE_BYPASS) = perf_state_bypass[0];
rPMGR_PERF_STATE_B(kPERF_STATE_BYPASS) = perf_state_bypass[1];
rPMGR_PERF_STATE_C(kPERF_STATE_BYPASS) = perf_state_bypass[2];
rPMGR_PERF_STATE_D(kPERF_STATE_BYPASS) = perf_state_bypass[3];
rPMGR_PERF_STATE_E(kPERF_STATE_BYPASS) = perf_state_bypass[4];
/* Change all the clocks to something safe */
clocks_quiesce_internal();
// Set default PLL parameters and lock time (1260 cycles)
for (cnt = 0; cnt < PMGR_PLL_COUNT; cnt++) {
rPMGR_PLL_PARAM(cnt) = 0x9AF10000 | PMGR_PARAM_LOCK_TIME(1260);
}
#if APPLICATION_SECUREROM
// Set up the active dvfm and performance states for the SecureROM
rPMGR_DVFM_CFG0(kDVFM_STATE_SECUREROM) = dvfm_state_active.pll_pms;
rPMGR_DVFM_CFG1(kDVFM_STATE_SECUREROM) = dvfm_state_active.clk_src << PMGR_DVFM_CFG1_CLK_SRC_SHIFT;
rPMGR_DVFM_CFG2(kDVFM_STATE_SECUREROM) = 0;
rPMGR_DVFM_CFG3(kDVFM_STATE_SECUREROM) = 0;
rPMGR_DVFM_CFG4(kDVFM_STATE_SECUREROM) = 0;
rPMGR_PERF_STATE_A(kPERF_STATE_SECUREROM) = perf_state_active[0];
rPMGR_PERF_STATE_B(kPERF_STATE_SECUREROM) = perf_state_active[1];
rPMGR_PERF_STATE_C(kPERF_STATE_SECUREROM) = perf_state_active[2];
rPMGR_PERF_STATE_D(kPERF_STATE_SECUREROM) = perf_state_active[3];
rPMGR_PERF_STATE_E(kPERF_STATE_SECUREROM) = perf_state_active[4];
#endif
#if APPLICATION_IBOOT
// Find the VID codes for the CPU, RAM and SoC rails
platform_get_cpu_voltages(kDVFM_STATE_COUNT, cpu_vid);
platform_get_ram_voltages(2, ram_vid);
platform_get_soc_voltages(3, soc_vid);
platform_convert_voltages(0, kDVFM_STATE_COUNT, cpu_vid);
platform_convert_voltages(16, 2, ram_vid);
platform_convert_voltages(2, 3, soc_vid);
count = sizeof(dvfm_state_active) / sizeof(struct dvfm_state);
// Set up the active dvfm and performance states for iBoot
for (cnt = 0; cnt < count; cnt++) {
// Set PLL Configuration
rPMGR_DVFM_CFG0(kDVFM_STATE_IBOOT + cnt) = dvfm_state_active[cnt].pll_pms;
// Set PLL Source and CPU Voltage Configuration
val = dvfm_state_active[cnt].clk_src << PMGR_DVFM_CFG1_CLK_SRC_SHIFT;
val |= (cpu_vid[dvfm_state_active[cnt].cpu_vi] & PMGR_DVFM_CFG1_VOL_MASK) << PMGR_DVFM_CFG1_SAFE_VOL_SHIFT;
rPMGR_DVFM_CFG1(kDVFM_STATE_IBOOT + cnt) = val;
// Set SRAM Voltage and Temperature Sensor Region Configuration (0mV, 18.75mV & 31.25mV)
// H5 Tunables Rev 0.63
val = (0xA << 12) | (0x5 << 6) | (0x0 << 0);
val |= (ram_vid[dvfm_state_active[cnt].ram_vi] & PMGR_DVFM_CFG2_SRAM_VOL_MASK) << PMGR_DVFM_CFG2_SRAM_VOL_SHIFT;
rPMGR_DVFM_CFG2(kDVFM_STATE_IBOOT + cnt) = val;
// Set Speed Sensor Configuration
rPMGR_DVFM_CFG3(kDVFM_STATE_IBOOT + cnt) = 0;
rPMGR_DVFM_CFG4(kDVFM_STATE_IBOOT + cnt) = 0;
}
for (cnt = 0; cnt < kPERF_STATE_IBOOT_CNT; cnt++) {
// Set the Clock Sources and Dividers
rPMGR_PERF_STATE_A(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt * 5) + 0];
rPMGR_PERF_STATE_B(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt * 5) + 1];
rPMGR_PERF_STATE_C(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt * 5) + 2];
rPMGR_PERF_STATE_D(kPERF_STATE_IBOOT + cnt) = perf_state_active[(cnt * 5) + 3];
// Set the SoC Voltage Configuration
val = perf_state_active[(cnt * 5) + 4];
reg = val & PMGR_PERF_STATE_E_VOL_MASK;
val = (val & ~PMGR_PERF_STATE_E_VOL_MASK) |
((soc_vid[reg] & PMGR_PERF_STATE_E_VOL_MASK) << PMGR_PERF_STATE_E_VOL_SHIFT);
rPMGR_PERF_STATE_E(kPERF_STATE_IBOOT + cnt) = val;
}
// Save the PERF_STATE configuration in rPMGR_SCRATCH1
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(0), kPERF_STATE_IBOOT + 0);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(1), kPERF_STATE_IBOOT + 1);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_P, kPERF_STATE_IBOOT + 3);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(0), kPERF_STATE_IBOOT + 0);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(1), kPERF_STATE_IBOOT + 1);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(2), kPERF_STATE_IBOOT + 2);
rPMGR_SCRATCH1 |= PGMR_SET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(3), kPERF_STATE_IBOOT + 3);
#endif
#ifdef PLL2_T
set_pll(2, PLL2_P, PLL2_M, PLL2_S, PLL2_V);
#endif
#ifdef PLL3_T
set_pll(3, PLL3_P, PLL3_M, PLL3_S, PLL3_V);
#endif
#ifdef PLL4_T
set_pll(4, PLL4_P, PLL4_M, PLL4_S, PLL4_V);
#endif
#ifdef PLL5_T
set_pll(5, PLL5_P, PLL5_M, PLL5_S, PLL5_V);
#endif
#ifdef PLL6_T
set_pll(6, PLL6_P, PLL6_M, PLL6_S, PLL6_V);
#endif
#ifdef PLLUSB_T
set_pll(7, PLLUSB_P, PLLUSB_M, PLLUSB_S, PLLUSB_V);
#endif
// Use get_pll() to establish the frequencies (unconfigured PLLs will bypass OSC)
for (cnt = 0; cnt < PMGR_PLL_COUNT; cnt++) plls[cnt] = get_pll(cnt);
perf_level = kPerformanceLow;
// Set all clock dividers to their active values
// Start with CPU then work backwards
for (cnt = 0; cnt < PMGR_CLK_CFG_COUNT; cnt++) {
reg = PMGR_CLK_CFG_COUNT - cnt;
if (reg == PMGR_CLK_CFG_COUNT) reg = 0;
// Take care of managed clocks before predivs
if (reg == PMGR_FIRST_MANAGED_CLK_NUM)
update_perf_state(kPerformanceLow);
val = clk_divs_active[reg];
clkcfgs[reg] = val;
// Sleep clock needs special attention: <rdar://problem/7556576>
// instead, we just make sure not to disable it.
wait_for_pending_clk_cfg_change(reg);
}
clocks_get_frequencies();
#if APPLICATION_IBOOT
// Configure SoC Voltage Delay for 12uS plus 12.5mV/uS
rPMGR_PERF_STATE_DELAY =
(144 << PMGR_PERF_STATE_DELAY_VOL_CHG_FIX_DLY_SHIFT) | (6 << PMGR_PERF_STATE_DELAY_VOL_CHG_VAR_DLY_SHIFT);
// Configure Sensor Interval to about 1ms and
// Configure CPU Voltage Delay for 12uS plus 12.5mV/uS
rPMGR_DVFM_DELAY =
(0 << 28) | (6 << 18) |
(144 << PMGR_DVFM_DELAY_VOL_CHG_FIX_DLY_SHIFT) | (6 << PMGR_DVFM_DELAY_VOL_CHG_VAR_DLY_SHIFT);
// Configure SRAM Voltage Delay for 12uS plus 12.5mV/uS
rPMGR_DVFM_SRAM_VOL_DELAY =
(144 << PMGR_DVFM_SRAM_VOL_DELAY_VOL_CHG_FIX_DLY_SHIFT) | (6 << PMGR_DVFM_SRAM_VOL_DELAY_VOL_CHG_VAR_DLY_SHIFT);
// Set Static Temperature Sensor Configuration
rPMGR_DVFM_COMMON_CFG =
((chipid_get_cpu_temp_offset(1) & 0x7F) << 21) |
((chipid_get_cpu_temp_offset(0) & 0x7F) << 14) |
(0x47 << 7) | (0x32 << 0);
// Configure Temperature Sensors
rPMGR_SENSOR_CMD = (1 << 20) | (1 << 16) | (0x827 << 0);
// Set Static DVFM Configuration
rPMGR_DVFM_STA_CTL = 0;
rPMGR_VOLMAN_CTL = PMGR_VOLMAN_CPU_SW_OFF_TIME_VALUE(45) | PMGR_VOLMAN_BIT_ORDER_MSB | PMGR_VOLMAM_BYTE_SWAP;
#endif
return 0;
}
static void update_perf_state(u_int32_t new_perf_level)
{
// Write the new select value for scc and soc
rPMGR_APSC_STA_CTL = PMGR_APSC_MANUAL_CHANGE(perf_levels[new_perf_level].dvfm_state, perf_levels[new_perf_level].perf_state);
wait_for_pending_apsc_change();
}
void clocks_quiesce(void)
{
/* mcu_clk will be changed to bypass clock */
clks[PMGR_CLK_MCU] = OSC_FREQ;
/* Change all the clocks to something safe */
clocks_quiesce_internal();
/* effectively full performance */
perf_level = kPerformanceHigh;
}
static void clock_update_range(u_int32_t first, u_int32_t last, const u_int32_t clkdata[])
{
volatile u_int32_t *clkcfgs = PMGR_FIRST_CLK_CFG;
u_int32_t val, reg;
reg = first;
while (reg <= last) {
val = clkdata[reg];
clkcfgs[reg] = val;
wait_for_pending_clk_cfg_change(reg);
reg++;
}
}
static void clocks_quiesce_internal(void)
{
u_int32_t cnt;
u_int64_t devices[2];
// Disable voltage changes
rPMGR_VOLMAN_CTL = PMGR_VOLMAN_DISABLE_VOL_CHANGE;
// Critical: AIC, DEBUG, GPIO, UPERF, CDMA, CDIO,
// MCU, L2, L2_BIU, CPU0, SCC
devices[0] = 0x00000002C0000136ULL;
devices[1] = 0x000000000000C800ULL;
// Turn on critical device clocks
clocks_set_gates(devices, true);
// Turn off non-critical device clocks
clocks_set_gates(devices, false);
// Simplified from PMGR Spec 0.045 Section 2.14.4.1
// Reset top-level dividers to bypass
clock_update_range(PMGR_CLK_NUM(PCLK1), PMGR_CLK_NUM(PREDIV5), clk_divs_bypass);
clock_update_range(PMGR_CLK_NUM(VID1), PMGR_CLK_NUM(VID1), clk_divs_bypass);
#if APPLICATION_IBOOT
miu_bypass_prep(0);
// Prepare to move memory to bypass clock (ensure not high frequency, enable DLL force mode)
rPMGR_APSC_STA_CTL = PMGR_APSC_MANUAL_CHANGE(perf_levels[kPerformanceMedium].dvfm_state, perf_levels[kPerformanceMedium].perf_state);
wait_for_pending_apsc_change();
miu_bypass_prep(1);
#endif
// Reset scc and soc managed clocks
rPMGR_APSC_STA_CTL = PMGR_APSC_MANUAL_CHANGE(kDVFM_STATE_BYPASS, kPERF_STATE_BYPASS);
wait_for_pending_apsc_change();
// Reset PLLs
for (cnt = 0; cnt < PMGR_PLL_COUNT; cnt++) {
rPMGR_PLL_CTL0(cnt) = PMGR_PLL_EXT_BYPASS;
// Wait for Bypass Enabled for PLL2 or higher
if (cnt >=2) {
wait_for_pll_bypass_enabled(cnt);
}
}
// Reset Doubler
rPMGR_DOUBLER_CTL = PMGR_DOUBLER_EXT_BYPASS;
wait_for_doubler_bypass_enabled();
// Reset the lower-level clocks
clock_update_range(PMGR_CLK_NUM(VENC_MTX), PMGR_CLK_NUM(NCO_REF1), clk_divs_bypass);
// Reset the CPU clocks
clock_update_range(PMGR_CLK_NUM(CPU), PMGR_CLK_NUM(MCU), clk_divs_bypass);
}
u_int32_t clocks_set_performance(u_int32_t performance_level)
{
u_int32_t old_perf_level = perf_level;
update_perf_state(performance_level);
perf_level = performance_level;
return old_perf_level;
}
void clock_get_frequencies(u_int32_t *clocks, u_int32_t count)
{
u_int32_t cnt = PMGR_CLK_COUNT;
if (cnt > count) cnt = count;
memcpy(clocks, clks, cnt * sizeof(u_int32_t));
}
u_int32_t clock_get_frequency(int clock)
{
switch (clock) {
case CLK_CPU:
case CLK_FCLK:
return clks[PMGR_CLK_CPU];
case CLK_ACLK:
case CLK_MEM:
return clks[PMGR_CLK_MCU];
case CLK_HCLK:
case CLK_BUS:
return clks[PMGR_CLK_CDIO];
case CLK_PERIPH:
case CLK_PCLK:
return clks[PMGR_CLK_PCLK0];
case CLK_FMI:
return clks[PMGR_CLK_PCLK1];
case CLK_NCLK:
case CLK_FIXED:
case CLK_TIMEBASE:
return clks[PMGR_CLK_OSC];
case CLK_USBPHYCLK:
#if SUPPORT_FPGA
return clks[PMGR_CLK_USB_PHY0]; /* The reference is special on FPGA */
#else
return clks[PMGR_CLK_OSC]; /* This is ref_24_clk, not usb_phy_clk */
#endif
case CLK_NCOREF:
return clks[PMGR_CLK_NCO_REF0];
case CLK_VCLK0:
return clks[PMGR_CLK_VID0];
case CLK_I2C0:
case CLK_I2C1:
case CLK_I2C2:
return clks[PMGR_CLK_I2C];
case CLK_MCLK:
default:
return 0;
}
}
void clock_set_frequency(int clock, u_int32_t divider, u_int32_t pll_p, u_int32_t pll_m, u_int32_t pll_s, u_int32_t pll_t)
{
u_int32_t total_div, prediv5_div, vid0_div;
switch (clock) {
case CLK_VCLK0:
// Calculate the total divider required
total_div = clks[PMGR_CLK_PLL4] / pll_t;
// Find the largest prediv5_div that will
// produce the correct total_div
for (prediv5_div = 31; prediv5_div > 1; prediv5_div--) {
if ((total_div % prediv5_div) == 0) break;
}
// Calculate vid0_div based on the part of
// total_div not in prediv5_div
vid0_div = total_div / prediv5_div;
// Set the clock dividers to their new values
rPMGR_PREDIV5_CLK_CFG = (rPMGR_PREDIV5_CLK_CFG & ~0x1f) | prediv5_div;
rPMGR_VID0_CLK_CFG = (rPMGR_VID0_CLK_CFG & ~0x1f) | vid0_div;
// Update the list of frequencies
clks[PMGR_CLK_PREDIV5] = clks[PMGR_CLK_PLL4] / prediv5_div;
clks[PMGR_CLK_VID0] = clks[PMGR_CLK_PREDIV5] / vid0_div;
break;
default:
break;
}
}
void clock_gate(int device, bool enable)
{
volatile u_int32_t *reg = PMGR_FIRST_PS + device;
if (reg > PMGR_LAST_PS) return;
// Set the PS field to the requested level
if (enable) *reg |= 0xF;
else *reg &= ~0xF;
// Wait for the PS and ACTUAL_PS fields to be equal
wait_for_dev_ps_change(device);
}
static void clocks_set_gates(u_int64_t *devices, bool enable)
{
u_int32_t dev, index;
volatile u_int32_t *devpss = PMGR_FIRST_PS;
u_int64_t mask = 1, devmask = 0;
for (dev = 0, index = -1; dev < PMGR_PS_COUNT; dev++, mask <<= 1) {
if ((dev % 64) == 0) {
devmask = devices[++index];
if (enable == false)
devmask ^= -1ULL;
mask = 1;
}
// Skip SCC
if (dev < PMGR_PS_NUM(MCU)) continue;
if ((devmask & mask) != 0) {
if (enable) devpss[dev] |= 0xF;
else devpss[dev] &= ~0xF;
// Wait for the PS and ACTUAL_PS fields to be equal
wait_for_dev_ps_change(dev);
}
}
}
void platform_system_reset(bool panic)
{
#if WITH_BOOT_STAGE
if (!panic) boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
// Use WDOG pin to cause a PMU reset
gpio_configure_out(GPIO_SYSTEM_RESET, 1);
while (1);
}
void platform_reset(bool panic)
{
#if WITH_BOOT_STAGE
if (!panic) boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
wdt_chip_reset();
while (1);
}
void platform_watchdog_tickle(void)
{
// Varies by target. This layer between is necessary so that
// we don't go straight from generic code to target.
target_watchdog_tickle();
}
static void clocks_get_frequencies(void)
{
#if SUPPORT_FPGA
u_int32_t cnt;
u_int32_t freq = OSC_FREQ;
for (cnt = 0; cnt < PMGR_CLK_COUNT; cnt++)
clks[cnt] = freq;
// From 'https://soc.apple.com/bali/public/fpga/release/a0/int3c_54/int3c_54-1.4/readme.html':
//
// Clock settings:
// ---------------
// MAIN_CLK: 7 MHz (need change UART Baud-rate: mem -memap 0 0x32500028 0xc000e)
// CPU_CLK: 3.5 MHz
// MCU_CLK: 4.5 MHz
// CPM_CLK: 64 MHz
clks[PMGR_CLK_CPU] = 3500000; // CPU
clks[PMGR_CLK_MCU] = 4500000; // DDR
clks[PMGR_CLK_MCU_FIXED] = 7000000; // NCLK (MAIN)
// XXX Why doesn't the USB clock correspond to the 30MHz
// claimed by fpga team? I'm not touching it because it
// appears to work as-is; however, I'd like to understand why
// this setting is (and has been, looking at H5P FPGA release
// notes) different from their claims.
clks[PMGR_CLK_USB_PHY0] = 12000000; // USB
for (cnt = 0; cnt < (kDVFM_STATE_IBOOT + 1); cnt++) {
cpu_clks[cnt] = clks[PMGR_CLK_CPU];
}
// keep compiler happy
cnt = (u_int32_t)clk_parents;
#else
volatile u_int32_t *reg;
u_int32_t cnt, val, p, m, s, source, divider, parent_idx;
u_int32_t divider_type, divider_offset;
u_int64_t freq;
u_int8_t *managed = (u_int8_t *)perf_state_active;
for (cnt = 0; cnt < kDVFM_STATE_COUNT; cnt++) {
// ignore DVFM states with no voltage
if ((rPMGR_DVFM_CFG1(cnt) & 0xFF) == 0) continue;
// decode the PLL settings
val = rPMGR_DVFM_CFG0(cnt);
p = 1 + ((val >> 9) & 0x1FF);
m = 1 + ((val >> 18) & 0x1FF);
s = 1 + ((val >> 0) & 0x1FF);
// calculate the frequency
freq = OSC_FREQ;
freq *= m;
freq /= p * s;
// save the frequency
cpu_clks[cnt] = freq;
}
for (cnt = 0; cnt < PMGR_CLK_COUNT; cnt++) {
reg = clk_parents[cnt].divider_reg;
if (reg == 0) continue;
val = *reg;
// Check if the clock in enabled
if ((val & PMGR_CLK_CFG_ENABLE) == 0) continue;
divider_type = clk_parents[cnt].divider_type;
divider_offset = clk_parents[cnt].divider_offset;
source = 0;
divider = 1;
switch (divider_type) {
case 1 : // Normal with divider
divider = (val >> 0) & PMGR_CLK_CFG_DIV_MASK;
// fall through
case 0 : // Normal without divider
source = (val >> 28) & 3;
break;
case 3 : // Managed with divider
divider = (managed[divider_offset] >> 0) & PMGR_CLK_CFG_DIV_MASK;
// fall through
case 2 : // Managed without divider
source = (managed[divider_offset] >> 5) & 3;
break;
}
parent_idx = clk_parents[cnt].parents[source];
freq = clks[parent_idx];
if ((cnt == PMGR_CLK_DOUBLER) && ((val & PMGR_DOUBLER_EXT_BYPASS) != 0))
freq *= 2;
freq /= divider;
clks[cnt] = freq;
}
#endif
}
static u_int32_t get_pll(int pll)
{
u_int32_t pll_ctl0, pll_ctl1;
u_int64_t freq = 0;
if (pll >= PMGR_PLL_COUNT) return 0;
pll_ctl0 = rPMGR_PLL_CTL0(pll);
pll_ctl1 = rPMGR_PLL_CTL1(pll);
if ((pll_ctl0 & PMGR_PLL_ENABLE) == 0) return 0;
if ((pll_ctl0 & (PMGR_PLL_EXT_BYPASS | PMGR_PLL_BYPASS))) {
freq = OSC_FREQ;
} else {
freq = OSC_FREQ;
freq *= 1 + ((pll_ctl1 >> PMGR_PLL_M_SHIFT) & PMGR_PLL_MASK); // *M
freq /= 1 + ((pll_ctl1 >> PMGR_PLL_P_SHIFT) & PMGR_PLL_MASK); // /P
freq /= 1 + ((pll_ctl1 >> PMGR_PLL_S_SHIFT) & PMGR_PLL_MASK); // /S
}
return freq;
}
static void set_pll(int pll, u_int32_t p, u_int32_t m, u_int32_t s, u_int32_t vco)
{
if (pll >= PMGR_PLL_COUNT) return;
// Set the P, M & S values
rPMGR_PLL_CTL1(pll) = PMGR_PLL_P(p) | PMGR_PLL_M(m) | PMGR_PLL_S(s);
// Enable the PLL and request it load the configuration
rPMGR_PLL_CTL0(pll) = PMGR_PLL_ENABLE | PMGR_PLL_LOAD;
// Wait for the PLL to lock
wait_for_pll_lock(pll);
}
#endif
void clock_reset_device(int device)
{
volatile u_int32_t *reg = PMGR_FIRST_PS + device;
switch (device) {
case CLK_CPU1 :
case CLK_FMI0 :
case CLK_FMI1 :
case CLK_IOP :
case CLK_MCU :
case CLK_SDIO :
*reg |= PMGR_PS_RESET;
spin(1);
*reg &= ~PMGR_PS_RESET;
break;
default :
break;
}
}
#if WITH_DEVICETREE
void pmgr_update_device_tree(DTNode *pmgr_node)
{
u_int32_t cnt, count, propSize, perf_state_config;
u_int64_t freq, period_ns;
u_int32_t cpu_volt[kDVFM_STATE_COUNT];
char *propName;
void *propData;
// Get the PERF_STATE configuration generated at hardware init
perf_state_config = rPMGR_SCRATCH1;
if (perf_state_config == 0) return;
// Fill in the firmware-v-perf-states property
propName = "firmware-v-perf-states";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (2 * sizeof(u_int32_t))) {
panic("pmgr property firmware-v-perf-states is the wrong size");
}
// Voltage states are in reverse order
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(1), perf_state_config);
((u_int32_t *)propData)[1] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_V(0), perf_state_config);
}
// Fill in the firmware-p-perf-state property
propName = "firmware-p-perf-state";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (1 * sizeof(u_int32_t))) {
panic("pmgr property firmware-p-perf-states is the wrong size");
}
// There is only one Frequency Managed / Performance state
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_P, perf_state_config);
}
// Fill in the firmware-m-perf-states property
propName = "firmware-m-perf-states";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
if (propSize != (4 * sizeof(u_int32_t))) {
panic("pmgr property firmware-m-perf-states is the wrong size");
}
// Memory states are in the same order
((u_int32_t *)propData)[0] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(0), perf_state_config);
((u_int32_t *)propData)[1] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(1), perf_state_config);
((u_int32_t *)propData)[2] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(2), perf_state_config);
((u_int32_t *)propData)[3] = PGMR_GET_PERF_STATE_INDEX(PMGR_PERF_STATE_M(3), perf_state_config);
}
// Fill in the voltage-states1 property
propName = "voltage-states1";
if (FindProperty(pmgr_node, &propName, &propData, &propSize)) {
count = propSize / sizeof(u_int32_t);
platform_get_cpu_voltages(kDVFM_STATE_COUNT, cpu_volt);
if (count > (kDVFM_STATE_COUNT - kDVFM_STATE_IBOOT)) count = kDVFM_STATE_COUNT - kDVFM_STATE_IBOOT;
for (cnt = 0; cnt < count; cnt++) {
freq = cpu_clks[kDVFM_STATE_IBOOT + cnt];
if (freq == 0) break;
// Calculate the period is ns as a 16.16 fixed point number
period_ns = 1000000000ULL << 16;
period_ns /= freq;
// Save the period and voltage
((u_int32_t *)propData)[2*cnt] = period_ns;
((u_int32_t *)propData)[2*cnt+1] = cpu_volt[dvfm_state_active[cnt].cpu_vi];
}
}
}
#endif
void init_thermal_sensors(void)
{
// Grab the 4 bit fuse revision
u_int32_t fuseRevision = chipid_get_fuse_revision();
// Bits [1 - 0] PWRDN Mode and enable.
// Bits [3 - 2] Reserved.
// Bits [ 4 ] Stat mode for Avg Max on.
// Bits [18 - 5] TADC_CFG Tmpsadc configuration bits.
// Bits [31 - 19] Misc interrupt/Alarm stick bits not used.
rPMGR_THERMAL0_CTL0 = 0x000184F0;
rPMGR_THERMAL1_CTL0 = 0x000184F0;
// Bits [15 - 0] PWRDN_START 20us wait
// Bits [31 - 16] PWRDN_GAP Gap between two readings.
rPMGR_THERMAL0_CTL1 = 0x005B01E4;
rPMGR_THERMAL1_CTL1 = 0x005B01E4;
// Bits [7 - 0] Conv_Cycle, cycles to wait before data is valid.
// Bits [15 - 8] Enable_Cycle, cycles to wait before adc_en can be deasserted.
// Bits [23 - 16] Finish_gap, Cycles to wait before adc_en can be reasserted.
// Bits [31 - 24] Reserved.
rPMGR_THERMAL0_CTL2 = 0x00100848;
rPMGR_THERMAL1_CTL2 = 0x00100848;
for (u_int32_t sensorID = 0; sensorID < 2; sensorID++) {
u_int32_t fusedTempValueAt70 = chipid_get_fused_thermal_sensor_70C(sensorID);
u_int32_t fusedTempValueAt25 = chipid_get_fused_thermal_sensor_25C(sensorID);
u_int32_t tempSlope = 0x100;
// If we read nothing from the fuse, then we need to supply some default for
// 1 pt calibration, see: <rdar://problem/10688137>
if ( (fusedTempValueAt25 == 0) && (fusedTempValueAt70 == 0) ) {
if (sensorID) {
fusedTempValueAt25 = 29;
} else {
fusedTempValueAt25 = 20;
}
// Forces us to generate a slope of 1.0
fusedTempValueAt70 = fusedTempValueAt25 + 45;
}
// Should probably make sure we don't divide by zero.
if (fusedTempValueAt25 == fusedTempValueAt70) {
fusedTempValueAt70 = 70;
fusedTempValueAt25 = 25;
dprintf(DEBUG_INFO, "Invalid soc thermal fuse values\n");
}
if (fuseRevision > 0) {
// 45 = 70 - 25
tempSlope = (45*256) / (fusedTempValueAt70 - fusedTempValueAt25);
} else {
dprintf(DEBUG_INFO, "Invalid soc thermal sensor fuse revision number.\n");
}
// Calculate the real offset.
u_int32_t realOffset = 25 - ((tempSlope * fusedTempValueAt25) / (tempSlope==0x100 ? 1:256));
// Bits 23 16
// Temp_OFFSET => [8 bit signed integer]
// Bits 9 0
// TEMP_SLOPE => [2 bit integer| 8 bit decimal]
switch (sensorID) {
case 0:
rPMGR_THERMAL0_CTL3 = (realOffset & 0xFF) << 16;
rPMGR_THERMAL0_CTL3 |= tempSlope & 0x3FF;
break;
case 1:
rPMGR_THERMAL1_CTL3 = (realOffset & 0xFF) << 16;
rPMGR_THERMAL1_CTL3 |= tempSlope & 0x3FF;
break;
}
}
}
static void wait_for_dev_ps_change(u_int32_t dev)
{
//#if ! SUPPORT_FPGA
// Wait for the PS and ACTUAL_PS fields to be equal
volatile u_int32_t *devpss = PMGR_FIRST_PS;
while ((devpss[dev] & 0xF) != ((devpss[dev] >> 4) & 0xF));
//#endif
}
static void wait_for_pending_apsc_change(void)
{
#if ! SUPPORT_FPGA
// Spin while the pending bit is asserted
while ((rPMGR_APSC_STA_CTL & PMGR_APSC_PENDING) != 0);
#endif
}
static void wait_for_pending_clk_cfg_change(u_int32_t clk)
{
#if ! SUPPORT_FPGA
// Spin while the pending bit is asserted
volatile u_int32_t *clkcfgs = PMGR_FIRST_CLK_CFG;
while (clkcfgs[clk] & PMGR_CLK_CFG_PENDING);
#endif
}
static void wait_for_pll_bypass_enabled(u_int32_t pll)
{
#if ! SUPPORT_FPGA
while (!(rPMGR_PLL_DEBUG(pll) & PMGR_PLL_DEBUG_BYP_ENABLED));
#endif
}
static void wait_for_pll_lock(u_int32_t pll)
{
#if ! SUPPORT_FPGA
while ((rPMGR_PLL_CTL0(pll) & PMGR_PLL_REAL_LOCK) == 0);
#endif
}
static void wait_for_doubler_bypass_enabled(void)
{
#if ! SUPPORT_FPGA
while (!(rPMGR_DOUBLER_DEBUG & PMGR_DOUBLER_DEBUG_BYP_ENABLED)) ;
#endif
}