iBoot/platform/s5l8950x/init.c

1304 lines
30 KiB
C

/*
* Copyright (C) 2010-2015 Apple Inc. All rights reserved.
*
* This document is the property of Apple Inc.
* It is considered confidential and proprietary.
*
* This document may not be reproduced or transmitted in any form,
* in whole or in part, without the express written permission of
* Apple Inc.
*/
#include <arch.h>
#include <arch/arm/arm.h>
#include <debug.h>
#include <drivers/aes.h>
#include <drivers/display.h>
#if WITH_HW_DISPLAY_PMU
#include <drivers/display_pmu.h>
#endif
#include <drivers/flash_nor.h>
#include <drivers/flash_nand.h>
#include <drivers/iic.h>
#include <drivers/nand_boot.h>
#include <drivers/nand_device_tree.h>
#include <drivers/power.h>
#include <drivers/shmcon.h>
#include <drivers/spi.h>
#include <drivers/uart.h>
#include <drivers/usb/usb_public.h>
#include <drivers/usbphy.h>
#include <lib/devicetree.h>
#include <lib/env.h>
#include <lib/image.h>
#include <lib/nonce.h>
#include <platform.h>
#include <platform/clocks.h>
#include <platform/gpio.h>
#include <platform/gpiodef.h>
#include <platform/int.h>
#include <platform/miu.h>
#include <platform/memmap.h>
#include <platform/power.h>
#include <platform/timer.h>
#include <platform/trampoline.h>
#include <platform/soc/hwclocks.h>
#include <platform/soc/chipid.h>
#include <platform/soc/miu.h>
#include <platform/soc/pmgr.h>
#include <sys.h>
#include <sys/boot.h>
#include <target.h>
#include <drivers/miu.h>
#include <drivers/hdc.h>
#if WITH_EFFACEABLE_NOR
#include <lib/effaceable_nor.h>
#endif
extern void dma_init(void);
static void platform_init_boot_strap(void);
static uint8_t boot_debug;
int platform_early_init(void)
{
#if PRODUCT_LLB || PRODUCT_IBSS
/* Verify that the fuses and that the SecureROM has been disabled */
if (!chipid_get_fuse_lock() || (((*(volatile u_int32_t *)SECURITY_REG) & ROM_READ_DISABLE) == 0)) {
panic("Fuses are unlocked or SecureROM is enabled");
}
#endif
#if WITH_HW_PLATFORM_POWER
/* initialize the s5l8950x pmgr driver */
platform_power_init();
#endif
platform_init_boot_strap();
#if WITH_HW_MIU
/* CIF, SCU, remap setup */
miu_init();
#endif
#if WITH_HW_CLOCKS
/* initialize the clock driver */
clocks_init();
#endif
#if WITH_HW_AIC
/* initialize the AIC, mask all interrupts */
interrupt_init();
#endif
#if WITH_HW_TIMER
timer_init(0);
#endif
#if WITH_HW_USBPHY
usbphy_power_down();
#endif
#if WITH_HW_UART
/* do whatever uart initialization we need to get a simple console */
uart_init();
#if !RELEASE_BUILD && (PRODUCT_IBSS || PRODUCT_IBEC)
debug_enable_uarts(3);
#endif
#endif
#if WITH_SHM_CONSOLE
shmcon_init();
#endif
#if WITH_IIC
iic_init();
#endif
#if !PRODUCT_IBOOT && !PRODUCT_IBEC
platform_init_power();
#if WITH_BOOT_STAGE
boot_check_stage();
#endif
#endif
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductStart);
#endif
#if WITH_HW_POWER
power_get_nvram(kPowerNVRAMiBootDebugKey, &boot_debug);
debug_enable_uarts(boot_debug);
#endif
#if WITH_HW_DMA
/* initialize the dma engine */
dma_init();
#endif
#if WITH_TARGET_CONFIG
target_early_init();
#endif
return 0;
}
int platform_late_init(void)
{
// Chips older then C0 are not supported
if (platform_get_chip_revision() < 0x20) platform_not_supported();
#if WITH_ENV
/* publish secure-boot flag for restore mode */
env_set_uint("secure-boot", 1, 0);
#endif
#if WITH_HW_USB && WITH_USB_MODE_RECOVERY
usb_early_init();
#endif
#if WITH_HW_POWER
power_late_init();
#endif
#if WITH_TARGET_CONFIG
target_late_init();
#endif
#if WITH_NAND
flash_nand_id();
#endif
#if WITH_HW_AMC
extern void mcu_late_init(void);
mcu_late_init();
#endif
return 0;
}
int platform_init_setup_clocks(void)
{
#if WITH_HW_CLOCKS
clocks_set_default();
#endif
return 0;
}
int platform_init_hwpins(void)
{
// need board id to select default pinconfig
platform_init_boot_strap();
#if WITH_HW_GPIO
/* finish initializing the gpio driver */
gpio_init_pinconfig();
#endif
return 0;
}
int platform_init_internal_mem(void)
{
#if WITH_HW_MIU
/* initialize sram bus */
miu_initialize_internal_ram();
#endif
return 0;
}
int platform_init_mainmem(bool resume)
{
#if WITH_HW_MIU && APPLICATION_IBOOT
/* initialize sdram */
miu_initialize_dram(resume);
/* always remap the memory region at this point, regardless of resume,
* because the early MMU init always runs and we have to fix up. */
platform_init_mainmem_map();
#endif
return 0;
}
void platform_init_mainmem_map(void)
{
#if APPLICATION_IBOOT
arm_mmu_map_section_range(SDRAM_BASE, SDRAM_BASE, ROUNDUP(SDRAM_BANK_LEN * SDRAM_BANK_COUNT, MB)/MB, kARMMMUNormal, true, true);
#endif
}
int platform_init_power(void)
{
#if WITH_HW_POWER
power_init();
#endif
return 0;
}
static bool gDisplayEnabled;
int platform_init_display(void)
{
#if WITH_HW_DISPLAYPIPE
static bool displayInitOnce;
uint32_t backlight_level = 0;
int result = 0;
/* initialize the display if not already enabled */
if (!gDisplayEnabled) {
#if WITH_HW_DISPLAY_PMU
display_pmu_init();
#endif
if (!displayInitOnce) {
platform_quiesce_display();
clock_gate(CLK_HPERFRT, true);
clock_gate(CLK_DISPOUT, true);
result = display_init();
} else result = -1;
/* if initialization fails, make sure we never try again. On success, gDisplayEnabled will be set,
* ensuring no reinitialization unless platform_quiesce_display is called first.
*/
if (result != 0) {
displayInitOnce = true;
}
}
if (result == 0) {
gDisplayEnabled = true;
backlight_level = env_get_uint("backlight-level", 0xffffffff);
}
power_backlight_enable(backlight_level);
#endif
return 0;
}
int platform_init_display_mem(addr_t *base, size_t *size)
{
#if WITH_HW_DISPLAYPIPE
u_int32_t base_rounded = *base;
u_int32_t end_rounded = *base + *size;
u_int32_t size_rounded = *size;
/* Map the framebuffer as device memory and
* round the base and size to the mapping granule.
*/
base_rounded = ROUNDDOWN(base_rounded, MB);
end_rounded = ROUNDUP(end_rounded, MB);
size_rounded = end_rounded - base_rounded;
arm_mmu_map_section_range(base_rounded, base_rounded, size_rounded/MB, kARMMMUWriteCombined, false, true);
*base = base_rounded;
*size = size_rounded;
#endif
return 0;
}
int platform_init_mass_storage(void)
{
#if WITH_NAND_FILESYSTEM
flash_nand_init();
#endif
#if WITH_SW_HDC
hdc_init();
#endif
return 0;
}
int platform_quiesce_hardware(enum boot_target target)
{
bool quiesce_clocks = false;
#if APPLICATION_SECUREROM
quiesce_clocks = true;
#endif
#if WITH_TARGET_CONFIG
target_quiesce_hardware();
#endif
#if WITH_HW_USB
usb_quiesce();
#endif
switch (target) {
case BOOT_HALT:
case BOOT_DARWIN_RESTORE:
break;
case BOOT_IBOOT:
case BOOT_DARWIN:
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductEnd);
#endif
break;
case BOOT_DIAGS:
quiesce_clocks = true;
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageProductEnd);
#endif
break;
case BOOT_SECUREROM:
quiesce_clocks = true;
// fall through to default
default:
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
break;
}
#if WITH_HW_TIMER
timer_stop_all();
#endif
#if WITH_HW_AIC
interrupt_mask_all();
#endif
if (quiesce_clocks) {
#if WITH_HW_CLOCKS
clocks_quiesce();
#endif
}
#if APPLICATION_IBOOT
switch (target) {
case BOOT_IBOOT :
break;
default:
break;
}
#endif
return 0;
}
int platform_quiesce_display(void)
{
#if WITH_HW_DISPLAYPIPE
// Turn off the back light
power_backlight_enable(0);
clock_gate(CLK_HPERFRT, true);
clock_gate(CLK_DISPOUT, true);
/* quiesce the panel */
if (display_quiesce(true) == ENXIO) {
clock_gate(CLK_HPERFRT, false);
clock_gate(CLK_DISPOUT, false);
}
#endif
gDisplayEnabled = false;
return 0;
}
int platform_bootprep(enum boot_target target)
{
u_int32_t gids = ~0, uids = ~0; /* leave crypto keys alone by default */
/* prepare hardware for booting into various targets */
#if WITH_HW_CLOCKS
if (target != BOOT_IBOOT) clocks_set_performance(kPerformanceHigh);
#endif
#if WITH_TARGET_CONFIG
target_bootprep(target);
#endif
/* If we're not restoring, reset the watchdog-on-wake until enabled */
if ((boot_debug & kPowerNVRAMiBootDebugWDTWake) && (target == BOOT_DARWIN))
{
boot_debug &= ~kPowerNVRAMiBootDebugWDTWake;
#if WITH_HW_POWER
power_set_nvram(kPowerNVRAMiBootDebugKey, boot_debug);
#endif
}
switch (target) {
#if APPLICATION_IBOOT
case BOOT_DARWIN_RESTORE:
platform_quiesce_display();
case BOOT_DARWIN:
#if WITH_PAINT
if (paint_color_map_is_invalid())
panic("Previous DClr errors prevent OS booting");
#endif
if (boot_debug & kPowerNVRAMiBootDebugWDTWake)
wdt_enable();
/* even when trusted, Darwin only gets the UID / GID1 */
uids = 1;
gids = 2;
#if WITH_HW_MIU
miu_select_remap(REMAP_SDRAM);
#endif
break;
case BOOT_DIAGS:
platform_quiesce_display();
#if WITH_BOOT_STAGE
boot_clear_error_count();
#endif
break;
case BOOT_IBOOT:
#endif
case BOOT_SECUREROM:
platform_quiesce_display();
#if WITH_HW_MIU
miu_select_remap(REMAP_SDRAM);
#endif
break;
case BOOT_UNKNOWN:
platform_quiesce_display();
break;
default:
; // do nothing
}
/* if we left the fuse unlocked for boot image processing,
* lock it now, after optionally switching from production to
* development fusing. */
if (security_get_production_override())
chipid_clear_production_mode();
chipid_set_fuse_lock(true);
/* Let security override keys */
if (!security_allow_modes(kSecurityModeGIDKeyAccess))
gids = 0;
if (!security_allow_modes(kSecurityModeUIDKeyAccess))
uids = 0;
/* disable all keys not requested */
platform_disable_keys(~gids, ~uids);
return 0;
}
void platform_mmu_setup(bool resume)
{
RELEASE_ASSERT(false == resume);
/* mark usable ram as cached/buffered */
arm_mmu_map_section_range(SRAM_BASE, SRAM_BASE, ROUNDUP(SRAM_BANK_LEN, MB)/MB, kARMMMUNormal, false, false);
#if APPLICATION_SECUREROM
arm_mmu_map_section_range(VROM_BASE, VROM_BASE, ROUNDUP(VROM_BANK_LEN, MB)/MB, kARMMMUNormal, false, false);
#endif
/* Remap text base is to zero (for exception vectors) */
arm_mmu_map_section(0, TEXT_BASE, kARMMMUNormalRX, false);
#ifdef MMU_NONCACHE0_SIZE
/* create the noncached0 mapping */
arm_mmu_map_section_range(MMU_NONCACHE0_VBASE, MMU_NONCACHE0_PBASE, ROUNDUP(MMU_NONCACHE0_SIZE, MB)/MB, kARMMMUStronglyOrdered, false, false);
#endif
#ifdef MMU_NONCACHE1_SIZE
/* create the noncached1 mapping */
arm_mmu_map_section_range(MMU_NONCACHE1_VBASE, MMU_NONCACHE1_PBASE, ROUNDUP(MMU_NONCACHE1_SIZE, MB)/MB, kARMMMUStronglyOrdered, false, false);
#endif
/* in cases where we are running from DRAM, remap it now */
if ((TEXT_BASE >= SDRAM_BASE) && (TEXT_BASE < SDRAM_END)) {
platform_init_mainmem_map();
}
}
int platform_init(void)
{
#if WITH_HW_SPI
spi_init();
#endif
#if WITH_NAND_BOOT
nand_boot_init();
#endif
#if WITH_TARGET_CONFIG
target_init();
#endif
#if WITH_EFFACEABLE_NOR
effaceable_nor_init();
#endif
return 0;
}
int platform_debug_init(void)
{
#if WITH_HW_USB
u_int32_t usb_enabled = 1;
#if WITH_ENV && SUPPORT_FPGA
usb_enabled = env_get_uint("usb-enabled", 1);
#endif
if (usb_enabled) usb_init();
#endif
#if WITH_TARGET_CONFIG
target_debug_init();
#endif
return 0;
}
void platform_poweroff(void)
{
platform_quiesce_display();
#if WITH_TARGET_CONFIG
target_poweroff();
#endif
#if WITH_HW_POWER
#if WITH_BOOT_STAGE
boot_set_stage(kPowerNVRAMiBootStageOff);
#endif
power_shutdown();
#endif
for(;;);
}
u_int32_t platform_set_performance(u_int32_t performance_level)
{
u_int32_t old_performance_level = kPerformanceHigh;
#if WITH_HW_CLOCKS
old_performance_level = clocks_set_performance(performance_level);
#endif
return old_performance_level;
}
#if WITH_DEVICETREE
int platform_update_device_tree(void)
{
DTNode *node;
u_int32_t propSize;
char *propName;
void *propData;
// Find the cpu0 node.
if (FindNode(0, "cpus/cpu0", &node)) {
// Fill in the cpu frequency
propName = "clock-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_CPU);
}
// Fill in the memory frequency
propName = "memory-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_MEM);
}
// Fill in the bus frequency
propName = "bus-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_BUS);
}
// Fill in the peripheral frequency
propName = "peripheral-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_PERIPH);
}
// Fill in the fixed frequency
propName = "fixed-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_FIXED);
}
// Fill in the time base frequency
propName = "timebase-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_TIMEBASE);
}
}
// Find the arm-io node
if (FindNode(0, "arm-io", &node)) {
// Fill in the clock-frequencies table
propName = "clock-frequencies";
if (FindProperty(node, &propName, &propData, &propSize)) {
clock_get_frequencies(propData, propSize / sizeof(u_int32_t));
}
// Fill in the usb-phy frequency
propName = "usbphy-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_USBPHYCLK);
}
}
// Find the pmgr node
if (FindNode(0, "arm-io/pmgr", &node)) {
pmgr_update_device_tree(node);
miu_update_device_tree(node);
}
// Find the audio-complex node
if (FindNode(0, "arm-io/audio-complex", &node)) {
// Fill in the ncoref-frequency frequency
propName = "ncoref-frequency";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = clock_get_frequency(CLK_NCOREF);
}
}
#if WITH_HW_PLATFORM_CHIPID
// Find the arm-io node
if (FindNode(0, "arm-io", &node)) {
// Fill in the chip-revision property
propName = "chip-revision";
if (FindProperty(node, &propName, &propData, &propSize)) {
*(uint32_t *)propData = platform_get_chip_revision();
}
}
#endif
#if WITH_NAND_FILESYSTEM
if (FindNode(0, "arm-io/flash-controller0/disk", &node)) {
fillNandConfigProperties(node);
}
#endif
#if WITH_HW_USBPHY
// Find the otgphyctrl node
if (FindNode(0, "arm-io/otgphyctrl", &node)) {
usbphy_update_device_tree(node);
}
#endif
return target_update_device_tree();
}
#endif
static void platform_init_boot_strap(void)
{
u_int32_t boot_strap, chip_board_id, gpio_board_id, boot_config;
// If rPMGR_SCRATCH0[0] set then boot strap already valid
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagBootStrap) != 0) return;
gpio_configure(GPIO_BOARD_ID0, GPIO_CFG_IN);
gpio_configure(GPIO_BOARD_ID1, GPIO_CFG_IN);
gpio_configure(GPIO_BOARD_ID2, GPIO_CFG_IN);
gpio_configure(GPIO_BOARD_ID3, GPIO_CFG_IN);
gpio_configure_pupdn(GPIO_BOARD_ID0, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOARD_ID1, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOARD_ID2, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOARD_ID3, GPIO_PDN);
gpio_configure(GPIO_BOOT_CONFIG0, GPIO_CFG_IN);
gpio_configure(GPIO_BOOT_CONFIG1, GPIO_CFG_IN);
gpio_configure(GPIO_BOOT_CONFIG2, GPIO_CFG_IN);
gpio_configure(GPIO_BOOT_CONFIG3, GPIO_CFG_IN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG0, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG1, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG2, GPIO_PDN);
gpio_configure_pupdn(GPIO_BOOT_CONFIG3, GPIO_PDN);
platform_power_spin(100); // Wait 100us
chip_board_id = chipid_get_board_id();
gpio_board_id =
(gpio_read(GPIO_BOARD_ID3) << 3) |
(gpio_read(GPIO_BOARD_ID2) << 2) |
(gpio_read(GPIO_BOARD_ID1) << 1) |
(gpio_read(GPIO_BOARD_ID0) << 0);
boot_config =
(gpio_read(GPIO_BOOT_CONFIG3) << 3) |
(gpio_read(GPIO_BOOT_CONFIG2) << 2) |
(gpio_read(GPIO_BOOT_CONFIG1) << 1) |
(gpio_read(GPIO_BOOT_CONFIG0) << 0);
gpio_configure(GPIO_BOARD_ID0, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOARD_ID1, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOARD_ID2, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOARD_ID3, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG0, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG1, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG2, GPIO_CFG_DFLT);
gpio_configure(GPIO_BOOT_CONFIG3, GPIO_CFG_DFLT);
boot_strap = (((chip_board_id << 4) | gpio_board_id) << 16) |
(boot_config << 8) |
(0x01 << 0);
rPMGR_SCRATCH0 = (rPMGR_SCRATCH0 & 0xFF000000) | (boot_strap & 0x00FFFFFF);
}
u_int32_t platform_get_board_id(void)
{
u_int32_t board_id;
ASSERT((rPMGR_SCRATCH0 & kPlatformScratchFlagBootStrap) != 0);
board_id = (rPMGR_SCRATCH0 >> 16) & 0xFF;
return board_id;
}
u_int32_t platform_get_boot_config(void)
{
u_int32_t boot_config;
boot_config = (rPMGR_SCRATCH0 >> 8) & 0xFF;
return boot_config;
}
bool platform_get_boot_device(int32_t index, enum boot_device *boot_device, u_int32_t *boot_flag, u_int32_t *boot_arg)
{
u_int32_t boot_config = platform_get_boot_config();
/* S5L8950X supports one boot device then USB-DFU per boot config */
/* If the index is not zero force DFU mode */
if (index != 0) index = 1;
switch (boot_config) {
case 0: /* SPI 0 */
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = 0;
*boot_arg = 0;
break;
case 1: /* SPI 3 */
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = 0;
*boot_arg = 3;
break;
case 2: /* SPI 0 Test Mode */
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 0;
break;
case 3: /* SPI 3 Test Mode */
*boot_device = BOOT_DEVICE_SPI;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 3;
break;
case 4: /* FMI0 2 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = 2 << 0;
break;
case 5: /* FMI0 4 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = 4 << 0;
break;
case 6: /* FMI0 4 CS Test Mode */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 4 << 0;
break;
/* case 7: Unused */
case 8: /* FMI1 2 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = 2 << 8;
break;
case 9: /* FMI1 4 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = 4 << 8;
break;
case 10: /* FMI1 4 CS Test Mode */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = 4 << 8;
break;
/* case 11: Unused */
case 12: /* FMI0/1 2/2 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = (2 << 8) | (2 << 0);
break;
case 13: /* FMI0/1 4/4 CS */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = 0;
*boot_arg = (4 << 8) | (4 << 0);
break;
case 14: /* FMI0/1 4/4 CS Test Mode */
*boot_device = BOOT_DEVICE_NAND;
*boot_flag = BOOT_FLAG_TEST_MODE;
*boot_arg = (4 << 8) | (4 << 0);
break;
/* case 15: Unused */
default:
return false;
}
/* Change boot_device and boot_arg for DFU Mode */
/* Don't change flags */
if (index == 1) {
*boot_device = BOOT_DEVICE_USBDFU;
*boot_arg = 0;
}
return true;
}
/*
* boot_interface_pin tables
* tables are executed in order for disable and reverse order for enable
*
*/
struct boot_interface_pin {
gpio_t pin;
u_int32_t enable;
u_int32_t disable;
};
#if WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI
static const struct boot_interface_pin spi0_boot_interface_pins[] =
{
#if SUPPORT_FPGA
{ GPIO( 6, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_SSIN
#else
{ GPIO( 6, 5), GPIO_CFG_OUT_1, GPIO_CFG_DFLT }, // SPI0_SSIN
#endif
{ GPIO( 6, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_SCLK
{ GPIO( 6, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI0_MOSI
{ GPIO( 6, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT } // SPI0_MISO
};
static const struct boot_interface_pin spi3_boot_interface_pins[] =
{
#if SUPPORT_FPGA
{ GPIO(10, 7), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI3_SSIN
#else
{ GPIO(10, 7), GPIO_CFG_OUT_1, GPIO_CFG_DFLT }, // SPI3_SSIN
#endif
{ GPIO(10, 6), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI3_SCLK
{ GPIO(10, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // SPI3_MOSI
{ GPIO(10, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT } // SPI3_MISO
};
#endif /* WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI */
#if WITH_HW_BOOTROM_NAND
/* Note: The code below expects this table to begin with CS3 through CS0 */
static const struct boot_interface_pin fmi0_boot_interface_pins[] =
{
{ GPIO(19, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_CEN3
{ GPIO(19, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_CEN2
{ GPIO(19, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_CEN1
{ GPIO(19, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_CEN0
{ GPIO(19, 6), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_CLE
{ GPIO(19, 7), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_ALE
{ GPIO(20, 0), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_REN
{ GPIO(20, 1), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_WEN
{ GPIO(21, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO0
{ GPIO(21, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO1
{ GPIO(21, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO2
{ GPIO(21, 1), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO3
{ GPIO(20, 6), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO4
{ GPIO(20, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO5
{ GPIO(20, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI0_IO6
{ GPIO(20, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT } // FMI0_IO7
};
/* Note: The code below expects this table to begin with CS3 through CS0 */
static const struct boot_interface_pin fmi1_boot_interface_pins[] =
{
{ GPIO(22, 1), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_CEN3
{ GPIO(22, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_CEN2
{ GPIO(22, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_CEN1
{ GPIO(22, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_CEN0
{ GPIO(22, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_CLE
{ GPIO(22, 6), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_ALE
{ GPIO(22, 7), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_REN
{ GPIO(23, 0), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_WEN
{ GPIO(24, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO0
{ GPIO(24, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO1
{ GPIO(24, 1), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO2
{ GPIO(24, 0), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO3
{ GPIO(23, 5), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO4
{ GPIO(23, 4), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO5
{ GPIO(23, 3), GPIO_CFG_FUNC0, GPIO_CFG_DFLT }, // FMI1_IO6
{ GPIO(23, 2), GPIO_CFG_FUNC0, GPIO_CFG_DFLT } // FMI1_IO7
};
#endif /* WITH_HW_BOOTROM_NAND */
void platform_enable_boot_interface(bool enable, enum boot_device boot_device, u_int32_t boot_arg)
{
const struct boot_interface_pin *pins0 = 0;
const struct boot_interface_pin *pins1 = 0;
u_int32_t cnt, func, pin_count0 = 0, pin_count1 = 0;
gpio_t pin;
switch (boot_device) {
#if WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI
case BOOT_DEVICE_SPI :
if (boot_arg == 0) {
pins0 = spi0_boot_interface_pins;
pin_count0 = (sizeof(spi0_boot_interface_pins) / sizeof(spi0_boot_interface_pins[0]));
} else if (boot_arg == 3) {
pins0 = spi3_boot_interface_pins;
pin_count0 = (sizeof(spi3_boot_interface_pins) / sizeof(spi3_boot_interface_pins[0]));
}
break;
#endif /* WITH_HW_FLASH_NOR && WITH_HW_FLASH_NOR_SPI */
#if WITH_HW_BOOTROM_NAND
case BOOT_DEVICE_NAND :
pins0 = fmi0_boot_interface_pins;
pin_count0 = (sizeof(fmi0_boot_interface_pins) / sizeof(fmi0_boot_interface_pins[0]));
switch ((boot_arg >> 0) & 0xFF) {
case 4: /* CS x4 - skip no pin */
break;
case 2: /* CS x2 - skip 2 pins */
pins0 += 2;
pin_count0 -= 2;
break;
default:
pins0 = 0;
pin_count0 = 0;
break;
}
pins1 = fmi1_boot_interface_pins;
pin_count1 = (sizeof(fmi1_boot_interface_pins) / sizeof(fmi1_boot_interface_pins[0]));
switch ((boot_arg >> 8) & 0xFF) {
case 4: /* CS x4 - skip no pin */
break;
case 2: /* CS x2 - skip 2 pins */
pins1 += 2;
pin_count1 -= 2;
break;
default:
pins1 = 0;
pin_count1 = 0;
break;
}
break;
#endif /* WITH_HW_BOOTROM_NAND */
#if WITH_USB_DFU
case BOOT_DEVICE_USBDFU :
/* USB is always configured */
break;
#endif /* WITH_USB_DFU */
default :
break;
}
for (cnt = 0; cnt < pin_count0; cnt++) {
if (enable) {
pin = pins0[pin_count0 - 1 - cnt].pin;
func = pins0[pin_count0 - 1 - cnt].enable;
} else {
pin = pins0[cnt].pin;
func = pins0[cnt].disable;
}
dprintf(DEBUG_INFO, "platform_enable_boot_interface: 0 %x, %x\n", pin, func);
gpio_configure(pin, func);
}
for (cnt = 0; cnt < pin_count1; cnt++) {
if (enable) {
pin = pins1[pin_count1 - 1 - cnt].pin;
func = pins1[pin_count1 - 1 - cnt].enable;
} else {
pin = pins1[cnt].pin;
func = pins1[cnt].disable;
}
dprintf(DEBUG_INFO, "platform_enable_boot_interface: 1 %x, %x\n", pin, func);
gpio_configure(pin, func);
}
}
u_int64_t platform_get_nonce(void)
{
u_int64_t nonce;
u_int32_t *nonce_words = (u_int32_t *)&nonce;
#if WITH_EFFACEABLE && PRODUCT_IBOOT
// <rdar://problem/11087637> N41 : Sundance 10A267 : USER IPSW : iTunes fails with error 21.
// In iboot use key stored in effaceable and cache it
// for later use, rather than using random_get_bytes
// key generated by secure-rom
static bool use_cached_effaceable_key;
if(use_cached_effaceable_key == false) {
rPMGR_SCRATCH0 &= ~kPlatformScratchFlagNonce;
use_cached_effaceable_key = true;
}
#endif
// If rPMGR_SCRATCH0[1] set then the nonce has already been generated
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagNonce) == 0) {
nonce = platform_consume_nonce();
rPMGR_SCRATCH14 = nonce_words[0];
rPMGR_SCRATCH15 = nonce_words[1];
rPMGR_SCRATCH0 |= kPlatformScratchFlagNonce;
} else {
nonce_words[0] = rPMGR_SCRATCH14;
nonce_words[1] = rPMGR_SCRATCH15;
}
return nonce;
}
bool platform_get_ecid_image_personalization_required(void)
{
return chipid_get_ecid_image_personalization_required();
}
u_int32_t platform_get_osc_frequency(void)
{
return chipid_get_osc_frequency();
}
#if WITH_TARGET_CONFIG
// The target's rules.mk sets the high SoC voltage point
#ifndef TARGET_BOOT_SOC_VOLTAGE
#error TARGET_BOOT_SOC_VOLTAGE not defined by the target
#endif
u_int32_t platform_get_base_soc_voltage(void)
{
return chipid_get_soc_voltage(TARGET_BOOT_SOC_VOLTAGE);
}
// The target's rules.mk sets the high CPU voltage point
#ifndef TARGET_BOOT_CPU_VOLTAGE
#error TARGET_BOOT_CPU_VOLTAGE not defined by the target
#endif
u_int32_t platform_get_base_cpu_voltage(void)
{
return chipid_get_cpu_voltage(TARGET_BOOT_CPU_VOLTAGE);
}
// The target's rules.mk sets the high RAM voltage point
#ifndef TARGET_BOOT_RAM_VOLTAGE
#error TARGET_BOOT_RAM_VOLTAGE not defined by the target
#endif
u_int32_t platform_get_base_ram_voltage(void)
{
return chipid_get_ram_voltage(TARGET_BOOT_RAM_VOLTAGE);
}
static const u_int32_t soc_voltage_points[] = {
CHIPID_SOC_VOLTAGE_LOW,
CHIPID_SOC_VOLTAGE_MED,
CHIPID_SOC_VOLTAGE_HIGH
};
int platform_get_soc_voltages(u_int32_t count, u_int32_t *voltages)
{
u_int32_t cnt, points = sizeof(soc_voltage_points) / sizeof(soc_voltage_points[0]);
if (voltages == 0) return -1;
if (count > points) count = points;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_soc_voltage(soc_voltage_points[cnt]);
}
return 0;
}
int platform_get_cpu_voltages(u_int32_t count, u_int32_t *voltages)
{
u_int32_t cnt;
if (voltages == 0) return -1;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_cpu_voltage(cnt);
}
return 0;
}
static const u_int32_t ram_voltage_points[] = {
CHIPID_RAM_VOLTAGE_LOW,
CHIPID_RAM_VOLTAGE_HIGH
};
int platform_get_ram_voltages(u_int32_t count, u_int32_t *voltages)
{
u_int32_t cnt, points = sizeof(ram_voltage_points) / sizeof(ram_voltage_points[0]);
if (voltages == 0) return -1;
if (count > points) count = points;
for (cnt = 0; cnt < count; cnt++) {
voltages[cnt] = chipid_get_ram_voltage(ram_voltage_points[cnt]);
}
return 0;
}
#endif /* WITH_TARGET_CONFIG */
int platform_convert_voltages(int buck, u_int32_t count, u_int32_t *voltages)
{
#if WITH_HW_POWER
u_int32_t index;
if (voltages == 0) return -1;
for (index = 0; index < count; index++) {
if (0 != power_get_buck_value(buck, voltages[index], &voltages[index]))
return -1;
}
return 0;
#else
return -1;
#endif
}
bool platform_get_usb_cable_connected(void)
{
#if WITH_HW_USBPHY
return usbphy_is_cable_connected();
#else
return false;
#endif
}
void platform_set_dfu_status(bool dfu)
{
gpio_write(GPIO_DFU_STATUS, dfu);
}
bool platform_get_force_dfu(void)
{
#if SUPPORT_FPGA
return !gpio_read(GPIO_FORCE_DFU);
#else
return gpio_read(GPIO_FORCE_DFU);
#endif
}
bool platform_get_request_dfu1(void) // Formerly platform_get_hold_key()
{
return !gpio_read(GPIO_REQUEST_DFU1);
}
bool platform_get_request_dfu2(void) // Formerly platform_get_menu_key()
{
return !gpio_read(GPIO_REQUEST_DFU2);
}
int platform_translate_key_selector(u_int32_t key_selector, u_int32_t *key_opts)
{
bool production = platform_get_current_production_mode();
switch (key_selector) {
case IMAGE_KEYBAG_SELECTOR_PROD :
if (!production) return -1;
break;
case IMAGE_KEYBAG_SELECTOR_DEV :
if (production) return -1;
break;
default :
return -1;
}
*key_opts = AES_KEY_TYPE_GID0 | AES_KEY_SIZE_256;
return 0;
}
bool platform_set_usb_brick_detect(int select)
{
#if WITH_HW_USBPHY
return usbphy_set_dpdm_monitor(select);
#else
return false;
#endif
}
#if APPLICATION_IBOOT
u_int64_t platform_get_memory_size(void)
{
u_int64_t memory_size;
// If rPMGR_SCRATCH0[2] set then the memory was inited, we have memory size info
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) != 0) {
memory_size = (rPMGR_SCRATCH13 & 0xffff) * 1024 * 1024;
}
else {
panic("memory not yet inited\n");
}
return memory_size;
}
u_int8_t platform_get_memory_manufacturer_id(void)
{
// If rPMGR_SCRATCH0[2] set then the memory was inited, we have memory vendor-id info
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) != 0) {
return ((rPMGR_SCRATCH13 >> 28) & 0xf);
}
else {
panic("memory not yet inited\n");
}
}
void platform_set_memory_info(u_int8_t manuf_id, u_int64_t memory_size)
{
if ((rPMGR_SCRATCH0 & kPlatformScratchFlagMemoryInfo) == 0) {
rPMGR_SCRATCH13 = 0;
}
rPMGR_SCRATCH13 = (manuf_id << 28) | (memory_size & 0xffff);
rPMGR_SCRATCH0 |= kPlatformScratchFlagMemoryInfo;
}
#endif