6888 lines
170 KiB
JavaScript
6888 lines
170 KiB
JavaScript
/**
|
|
* @fileoverview gl-matrix - High performance matrix and vector operations
|
|
* @author Brandon Jones
|
|
* @author Colin MacKenzie IV
|
|
* @version 2.4.0
|
|
*/
|
|
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
(function webpackUniversalModuleDefinition(root, factory) {
|
|
if(typeof exports === 'object' && typeof module === 'object')
|
|
module.exports = factory();
|
|
else if(typeof define === 'function' && define.amd)
|
|
define([], factory);
|
|
else {
|
|
var a = factory();
|
|
for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i];
|
|
}
|
|
})(this, function() {
|
|
return /******/ (function(modules) { // webpackBootstrap
|
|
/******/ // The module cache
|
|
/******/ var installedModules = {};
|
|
/******/
|
|
/******/ // The require function
|
|
/******/ function __webpack_require__(moduleId) {
|
|
/******/
|
|
/******/ // Check if module is in cache
|
|
/******/ if(installedModules[moduleId]) {
|
|
/******/ return installedModules[moduleId].exports;
|
|
/******/ }
|
|
/******/ // Create a new module (and put it into the cache)
|
|
/******/ var module = installedModules[moduleId] = {
|
|
/******/ i: moduleId,
|
|
/******/ l: false,
|
|
/******/ exports: {}
|
|
/******/ };
|
|
/******/
|
|
/******/ // Execute the module function
|
|
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
|
|
/******/
|
|
/******/ // Flag the module as loaded
|
|
/******/ module.l = true;
|
|
/******/
|
|
/******/ // Return the exports of the module
|
|
/******/ return module.exports;
|
|
/******/ }
|
|
/******/
|
|
/******/
|
|
/******/ // expose the modules object (__webpack_modules__)
|
|
/******/ __webpack_require__.m = modules;
|
|
/******/
|
|
/******/ // expose the module cache
|
|
/******/ __webpack_require__.c = installedModules;
|
|
/******/
|
|
/******/ // define getter function for harmony exports
|
|
/******/ __webpack_require__.d = function(exports, name, getter) {
|
|
/******/ if(!__webpack_require__.o(exports, name)) {
|
|
/******/ Object.defineProperty(exports, name, {
|
|
/******/ configurable: false,
|
|
/******/ enumerable: true,
|
|
/******/ get: getter
|
|
/******/ });
|
|
/******/ }
|
|
/******/ };
|
|
/******/
|
|
/******/ // getDefaultExport function for compatibility with non-harmony modules
|
|
/******/ __webpack_require__.n = function(module) {
|
|
/******/ var getter = module && module.__esModule ?
|
|
/******/ function getDefault() { return module['default']; } :
|
|
/******/ function getModuleExports() { return module; };
|
|
/******/ __webpack_require__.d(getter, 'a', getter);
|
|
/******/ return getter;
|
|
/******/ };
|
|
/******/
|
|
/******/ // Object.prototype.hasOwnProperty.call
|
|
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
|
|
/******/
|
|
/******/ // __webpack_public_path__
|
|
/******/ __webpack_require__.p = "";
|
|
/******/
|
|
/******/ // Load entry module and return exports
|
|
/******/ return __webpack_require__(__webpack_require__.s = 4);
|
|
/******/ })
|
|
/************************************************************************/
|
|
/******/ ([
|
|
/* 0 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.setMatrixArrayType = setMatrixArrayType;
|
|
exports.toRadian = toRadian;
|
|
exports.equals = equals;
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
/**
|
|
* Common utilities
|
|
* @module glMatrix
|
|
*/
|
|
|
|
// Configuration Constants
|
|
var EPSILON = exports.EPSILON = 0.000001;
|
|
var ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;
|
|
var RANDOM = exports.RANDOM = Math.random;
|
|
|
|
/**
|
|
* Sets the type of array used when creating new vectors and matrices
|
|
*
|
|
* @param {Type} type Array type, such as Float32Array or Array
|
|
*/
|
|
function setMatrixArrayType(type) {
|
|
exports.ARRAY_TYPE = ARRAY_TYPE = type;
|
|
}
|
|
|
|
var degree = Math.PI / 180;
|
|
|
|
/**
|
|
* Convert Degree To Radian
|
|
*
|
|
* @param {Number} a Angle in Degrees
|
|
*/
|
|
function toRadian(a) {
|
|
return a * degree;
|
|
}
|
|
|
|
/**
|
|
* Tests whether or not the arguments have approximately the same value, within an absolute
|
|
* or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less
|
|
* than or equal to 1.0, and a relative tolerance is used for larger values)
|
|
*
|
|
* @param {Number} a The first number to test.
|
|
* @param {Number} b The second number to test.
|
|
* @returns {Boolean} True if the numbers are approximately equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
|
|
}
|
|
|
|
/***/ }),
|
|
/* 1 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.sub = exports.mul = undefined;
|
|
exports.create = create;
|
|
exports.fromMat4 = fromMat4;
|
|
exports.clone = clone;
|
|
exports.copy = copy;
|
|
exports.fromValues = fromValues;
|
|
exports.set = set;
|
|
exports.identity = identity;
|
|
exports.transpose = transpose;
|
|
exports.invert = invert;
|
|
exports.adjoint = adjoint;
|
|
exports.determinant = determinant;
|
|
exports.multiply = multiply;
|
|
exports.translate = translate;
|
|
exports.rotate = rotate;
|
|
exports.scale = scale;
|
|
exports.fromTranslation = fromTranslation;
|
|
exports.fromRotation = fromRotation;
|
|
exports.fromScaling = fromScaling;
|
|
exports.fromMat2d = fromMat2d;
|
|
exports.fromQuat = fromQuat;
|
|
exports.normalFromMat4 = normalFromMat4;
|
|
exports.projection = projection;
|
|
exports.str = str;
|
|
exports.frob = frob;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiplyScalar = multiplyScalar;
|
|
exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 3x3 Matrix
|
|
* @module mat3
|
|
*/
|
|
|
|
/**
|
|
* Creates a new identity mat3
|
|
*
|
|
* @returns {mat3} a new 3x3 matrix
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(9);
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 1;
|
|
out[5] = 0;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copies the upper-left 3x3 values into the given mat3.
|
|
*
|
|
* @param {mat3} out the receiving 3x3 matrix
|
|
* @param {mat4} a the source 4x4 matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function fromMat4(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[4];
|
|
out[4] = a[5];
|
|
out[5] = a[6];
|
|
out[6] = a[8];
|
|
out[7] = a[9];
|
|
out[8] = a[10];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new mat3 initialized with values from an existing matrix
|
|
*
|
|
* @param {mat3} a matrix to clone
|
|
* @returns {mat3} a new 3x3 matrix
|
|
*/
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(9);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[8] = a[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one mat3 to another
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the source matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[8] = a[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Create a new mat3 with the given values
|
|
*
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 3)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 4)
|
|
* @param {Number} m12 Component in column 1, row 2 position (index 5)
|
|
* @param {Number} m20 Component in column 2, row 0 position (index 6)
|
|
* @param {Number} m21 Component in column 2, row 1 position (index 7)
|
|
* @param {Number} m22 Component in column 2, row 2 position (index 8)
|
|
* @returns {mat3} A new mat3
|
|
*/
|
|
function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
|
|
var out = new glMatrix.ARRAY_TYPE(9);
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m02;
|
|
out[3] = m10;
|
|
out[4] = m11;
|
|
out[5] = m12;
|
|
out[6] = m20;
|
|
out[7] = m21;
|
|
out[8] = m22;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a mat3 to the given values
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 3)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 4)
|
|
* @param {Number} m12 Component in column 1, row 2 position (index 5)
|
|
* @param {Number} m20 Component in column 2, row 0 position (index 6)
|
|
* @param {Number} m21 Component in column 2, row 1 position (index 7)
|
|
* @param {Number} m22 Component in column 2, row 2 position (index 8)
|
|
* @returns {mat3} out
|
|
*/
|
|
function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m02;
|
|
out[3] = m10;
|
|
out[4] = m11;
|
|
out[5] = m12;
|
|
out[6] = m20;
|
|
out[7] = m21;
|
|
out[8] = m22;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set a mat3 to the identity matrix
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
function identity(out) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 1;
|
|
out[5] = 0;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transpose the values of a mat3
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the source matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
function transpose(out, a) {
|
|
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
|
if (out === a) {
|
|
var a01 = a[1],
|
|
a02 = a[2],
|
|
a12 = a[5];
|
|
out[1] = a[3];
|
|
out[2] = a[6];
|
|
out[3] = a01;
|
|
out[5] = a[7];
|
|
out[6] = a02;
|
|
out[7] = a12;
|
|
} else {
|
|
out[0] = a[0];
|
|
out[1] = a[3];
|
|
out[2] = a[6];
|
|
out[3] = a[1];
|
|
out[4] = a[4];
|
|
out[5] = a[7];
|
|
out[6] = a[2];
|
|
out[7] = a[5];
|
|
out[8] = a[8];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Inverts a mat3
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the source matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
function invert(out, a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2];
|
|
var a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5];
|
|
var a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8];
|
|
|
|
var b01 = a22 * a11 - a12 * a21;
|
|
var b11 = -a22 * a10 + a12 * a20;
|
|
var b21 = a21 * a10 - a11 * a20;
|
|
|
|
// Calculate the determinant
|
|
var det = a00 * b01 + a01 * b11 + a02 * b21;
|
|
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = b01 * det;
|
|
out[1] = (-a22 * a01 + a02 * a21) * det;
|
|
out[2] = (a12 * a01 - a02 * a11) * det;
|
|
out[3] = b11 * det;
|
|
out[4] = (a22 * a00 - a02 * a20) * det;
|
|
out[5] = (-a12 * a00 + a02 * a10) * det;
|
|
out[6] = b21 * det;
|
|
out[7] = (-a21 * a00 + a01 * a20) * det;
|
|
out[8] = (a11 * a00 - a01 * a10) * det;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the adjugate of a mat3
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the source matrix
|
|
* @returns {mat3} out
|
|
*/
|
|
function adjoint(out, a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2];
|
|
var a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5];
|
|
var a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8];
|
|
|
|
out[0] = a11 * a22 - a12 * a21;
|
|
out[1] = a02 * a21 - a01 * a22;
|
|
out[2] = a01 * a12 - a02 * a11;
|
|
out[3] = a12 * a20 - a10 * a22;
|
|
out[4] = a00 * a22 - a02 * a20;
|
|
out[5] = a02 * a10 - a00 * a12;
|
|
out[6] = a10 * a21 - a11 * a20;
|
|
out[7] = a01 * a20 - a00 * a21;
|
|
out[8] = a00 * a11 - a01 * a10;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the determinant of a mat3
|
|
*
|
|
* @param {mat3} a the source matrix
|
|
* @returns {Number} determinant of a
|
|
*/
|
|
function determinant(a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2];
|
|
var a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5];
|
|
var a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8];
|
|
|
|
return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
|
|
}
|
|
|
|
/**
|
|
* Multiplies two mat3's
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the first operand
|
|
* @param {mat3} b the second operand
|
|
* @returns {mat3} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2];
|
|
var a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5];
|
|
var a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8];
|
|
|
|
var b00 = b[0],
|
|
b01 = b[1],
|
|
b02 = b[2];
|
|
var b10 = b[3],
|
|
b11 = b[4],
|
|
b12 = b[5];
|
|
var b20 = b[6],
|
|
b21 = b[7],
|
|
b22 = b[8];
|
|
|
|
out[0] = b00 * a00 + b01 * a10 + b02 * a20;
|
|
out[1] = b00 * a01 + b01 * a11 + b02 * a21;
|
|
out[2] = b00 * a02 + b01 * a12 + b02 * a22;
|
|
|
|
out[3] = b10 * a00 + b11 * a10 + b12 * a20;
|
|
out[4] = b10 * a01 + b11 * a11 + b12 * a21;
|
|
out[5] = b10 * a02 + b11 * a12 + b12 * a22;
|
|
|
|
out[6] = b20 * a00 + b21 * a10 + b22 * a20;
|
|
out[7] = b20 * a01 + b21 * a11 + b22 * a21;
|
|
out[8] = b20 * a02 + b21 * a12 + b22 * a22;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Translate a mat3 by the given vector
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the matrix to translate
|
|
* @param {vec2} v vector to translate by
|
|
* @returns {mat3} out
|
|
*/
|
|
function translate(out, a, v) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5],
|
|
a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8],
|
|
x = v[0],
|
|
y = v[1];
|
|
|
|
out[0] = a00;
|
|
out[1] = a01;
|
|
out[2] = a02;
|
|
|
|
out[3] = a10;
|
|
out[4] = a11;
|
|
out[5] = a12;
|
|
|
|
out[6] = x * a00 + y * a10 + a20;
|
|
out[7] = x * a01 + y * a11 + a21;
|
|
out[8] = x * a02 + y * a12 + a22;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a mat3 by the given angle
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat3} out
|
|
*/
|
|
function rotate(out, a, rad) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a10 = a[3],
|
|
a11 = a[4],
|
|
a12 = a[5],
|
|
a20 = a[6],
|
|
a21 = a[7],
|
|
a22 = a[8],
|
|
s = Math.sin(rad),
|
|
c = Math.cos(rad);
|
|
|
|
out[0] = c * a00 + s * a10;
|
|
out[1] = c * a01 + s * a11;
|
|
out[2] = c * a02 + s * a12;
|
|
|
|
out[3] = c * a10 - s * a00;
|
|
out[4] = c * a11 - s * a01;
|
|
out[5] = c * a12 - s * a02;
|
|
|
|
out[6] = a20;
|
|
out[7] = a21;
|
|
out[8] = a22;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Scales the mat3 by the dimensions in the given vec2
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the matrix to rotate
|
|
* @param {vec2} v the vec2 to scale the matrix by
|
|
* @returns {mat3} out
|
|
**/
|
|
function scale(out, a, v) {
|
|
var x = v[0],
|
|
y = v[1];
|
|
|
|
out[0] = x * a[0];
|
|
out[1] = x * a[1];
|
|
out[2] = x * a[2];
|
|
|
|
out[3] = y * a[3];
|
|
out[4] = y * a[4];
|
|
out[5] = y * a[5];
|
|
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[8] = a[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector translation
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat3.identity(dest);
|
|
* mat3.translate(dest, dest, vec);
|
|
*
|
|
* @param {mat3} out mat3 receiving operation result
|
|
* @param {vec2} v Translation vector
|
|
* @returns {mat3} out
|
|
*/
|
|
function fromTranslation(out, v) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 1;
|
|
out[5] = 0;
|
|
out[6] = v[0];
|
|
out[7] = v[1];
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a given angle
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat3.identity(dest);
|
|
* mat3.rotate(dest, dest, rad);
|
|
*
|
|
* @param {mat3} out mat3 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat3} out
|
|
*/
|
|
function fromRotation(out, rad) {
|
|
var s = Math.sin(rad),
|
|
c = Math.cos(rad);
|
|
|
|
out[0] = c;
|
|
out[1] = s;
|
|
out[2] = 0;
|
|
|
|
out[3] = -s;
|
|
out[4] = c;
|
|
out[5] = 0;
|
|
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector scaling
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat3.identity(dest);
|
|
* mat3.scale(dest, dest, vec);
|
|
*
|
|
* @param {mat3} out mat3 receiving operation result
|
|
* @param {vec2} v Scaling vector
|
|
* @returns {mat3} out
|
|
*/
|
|
function fromScaling(out, v) {
|
|
out[0] = v[0];
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
|
|
out[3] = 0;
|
|
out[4] = v[1];
|
|
out[5] = 0;
|
|
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copies the values from a mat2d into a mat3
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat2d} a the matrix to copy
|
|
* @returns {mat3} out
|
|
**/
|
|
function fromMat2d(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = 0;
|
|
|
|
out[3] = a[2];
|
|
out[4] = a[3];
|
|
out[5] = 0;
|
|
|
|
out[6] = a[4];
|
|
out[7] = a[5];
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates a 3x3 matrix from the given quaternion
|
|
*
|
|
* @param {mat3} out mat3 receiving operation result
|
|
* @param {quat} q Quaternion to create matrix from
|
|
*
|
|
* @returns {mat3} out
|
|
*/
|
|
function fromQuat(out, q) {
|
|
var x = q[0],
|
|
y = q[1],
|
|
z = q[2],
|
|
w = q[3];
|
|
var x2 = x + x;
|
|
var y2 = y + y;
|
|
var z2 = z + z;
|
|
|
|
var xx = x * x2;
|
|
var yx = y * x2;
|
|
var yy = y * y2;
|
|
var zx = z * x2;
|
|
var zy = z * y2;
|
|
var zz = z * z2;
|
|
var wx = w * x2;
|
|
var wy = w * y2;
|
|
var wz = w * z2;
|
|
|
|
out[0] = 1 - yy - zz;
|
|
out[3] = yx - wz;
|
|
out[6] = zx + wy;
|
|
|
|
out[1] = yx + wz;
|
|
out[4] = 1 - xx - zz;
|
|
out[7] = zy - wx;
|
|
|
|
out[2] = zx - wy;
|
|
out[5] = zy + wx;
|
|
out[8] = 1 - xx - yy;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
|
|
*
|
|
* @param {mat3} out mat3 receiving operation result
|
|
* @param {mat4} a Mat4 to derive the normal matrix from
|
|
*
|
|
* @returns {mat3} out
|
|
*/
|
|
function normalFromMat4(out, a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a10 = a[4],
|
|
a11 = a[5],
|
|
a12 = a[6],
|
|
a13 = a[7];
|
|
var a20 = a[8],
|
|
a21 = a[9],
|
|
a22 = a[10],
|
|
a23 = a[11];
|
|
var a30 = a[12],
|
|
a31 = a[13],
|
|
a32 = a[14],
|
|
a33 = a[15];
|
|
|
|
var b00 = a00 * a11 - a01 * a10;
|
|
var b01 = a00 * a12 - a02 * a10;
|
|
var b02 = a00 * a13 - a03 * a10;
|
|
var b03 = a01 * a12 - a02 * a11;
|
|
var b04 = a01 * a13 - a03 * a11;
|
|
var b05 = a02 * a13 - a03 * a12;
|
|
var b06 = a20 * a31 - a21 * a30;
|
|
var b07 = a20 * a32 - a22 * a30;
|
|
var b08 = a20 * a33 - a23 * a30;
|
|
var b09 = a21 * a32 - a22 * a31;
|
|
var b10 = a21 * a33 - a23 * a31;
|
|
var b11 = a22 * a33 - a23 * a32;
|
|
|
|
// Calculate the determinant
|
|
var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
|
out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
|
out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
|
|
|
out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
|
out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
|
out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
|
|
|
out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
|
out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
|
out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a 2D projection matrix with the given bounds
|
|
*
|
|
* @param {mat3} out mat3 frustum matrix will be written into
|
|
* @param {number} width Width of your gl context
|
|
* @param {number} height Height of gl context
|
|
* @returns {mat3} out
|
|
*/
|
|
function projection(out, width, height) {
|
|
out[0] = 2 / width;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = -2 / height;
|
|
out[5] = 0;
|
|
out[6] = -1;
|
|
out[7] = 1;
|
|
out[8] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a mat3
|
|
*
|
|
* @param {mat3} a matrix to represent as a string
|
|
* @returns {String} string representation of the matrix
|
|
*/
|
|
function str(a) {
|
|
return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns Frobenius norm of a mat3
|
|
*
|
|
* @param {mat3} a the matrix to calculate Frobenius norm of
|
|
* @returns {Number} Frobenius norm
|
|
*/
|
|
function frob(a) {
|
|
return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));
|
|
}
|
|
|
|
/**
|
|
* Adds two mat3's
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the first operand
|
|
* @param {mat3} b the second operand
|
|
* @returns {mat3} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
out[4] = a[4] + b[4];
|
|
out[5] = a[5] + b[5];
|
|
out[6] = a[6] + b[6];
|
|
out[7] = a[7] + b[7];
|
|
out[8] = a[8] + b[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts matrix b from matrix a
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the first operand
|
|
* @param {mat3} b the second operand
|
|
* @returns {mat3} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
out[4] = a[4] - b[4];
|
|
out[5] = a[5] - b[5];
|
|
out[6] = a[6] - b[6];
|
|
out[7] = a[7] - b[7];
|
|
out[8] = a[8] - b[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiply each element of the matrix by a scalar.
|
|
*
|
|
* @param {mat3} out the receiving matrix
|
|
* @param {mat3} a the matrix to scale
|
|
* @param {Number} b amount to scale the matrix's elements by
|
|
* @returns {mat3} out
|
|
*/
|
|
function multiplyScalar(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
out[4] = a[4] * b;
|
|
out[5] = a[5] * b;
|
|
out[6] = a[6] * b;
|
|
out[7] = a[7] * b;
|
|
out[8] = a[8] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two mat3's after multiplying each element of the second operand by a scalar value.
|
|
*
|
|
* @param {mat3} out the receiving vector
|
|
* @param {mat3} a the first operand
|
|
* @param {mat3} b the second operand
|
|
* @param {Number} scale the amount to scale b's elements by before adding
|
|
* @returns {mat3} out
|
|
*/
|
|
function multiplyScalarAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
out[3] = a[3] + b[3] * scale;
|
|
out[4] = a[4] + b[4] * scale;
|
|
out[5] = a[5] + b[5] * scale;
|
|
out[6] = a[6] + b[6] * scale;
|
|
out[7] = a[7] + b[7] * scale;
|
|
out[8] = a[8] + b[8] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {mat3} a The first matrix.
|
|
* @param {mat3} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
|
*
|
|
* @param {mat3} a The first matrix.
|
|
* @param {mat3} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5],
|
|
a6 = a[6],
|
|
a7 = a[7],
|
|
a8 = a[8];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3],
|
|
b4 = b[4],
|
|
b5 = b[5],
|
|
b6 = b[6],
|
|
b7 = b[7],
|
|
b8 = b[8];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link mat3.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link mat3.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/***/ }),
|
|
/* 2 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.length = length;
|
|
exports.fromValues = fromValues;
|
|
exports.copy = copy;
|
|
exports.set = set;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiply = multiply;
|
|
exports.divide = divide;
|
|
exports.ceil = ceil;
|
|
exports.floor = floor;
|
|
exports.min = min;
|
|
exports.max = max;
|
|
exports.round = round;
|
|
exports.scale = scale;
|
|
exports.scaleAndAdd = scaleAndAdd;
|
|
exports.distance = distance;
|
|
exports.squaredDistance = squaredDistance;
|
|
exports.squaredLength = squaredLength;
|
|
exports.negate = negate;
|
|
exports.inverse = inverse;
|
|
exports.normalize = normalize;
|
|
exports.dot = dot;
|
|
exports.cross = cross;
|
|
exports.lerp = lerp;
|
|
exports.hermite = hermite;
|
|
exports.bezier = bezier;
|
|
exports.random = random;
|
|
exports.transformMat4 = transformMat4;
|
|
exports.transformMat3 = transformMat3;
|
|
exports.transformQuat = transformQuat;
|
|
exports.rotateX = rotateX;
|
|
exports.rotateY = rotateY;
|
|
exports.rotateZ = rotateZ;
|
|
exports.angle = angle;
|
|
exports.str = str;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 3 Dimensional Vector
|
|
* @module vec3
|
|
*/
|
|
|
|
/**
|
|
* Creates a new, empty vec3
|
|
*
|
|
* @returns {vec3} a new 3D vector
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(3);
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec3 initialized with values from an existing vector
|
|
*
|
|
* @param {vec3} a vector to clone
|
|
* @returns {vec3} a new 3D vector
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(3);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the length of a vec3
|
|
*
|
|
* @param {vec3} a vector to calculate length of
|
|
* @returns {Number} length of a
|
|
*/
|
|
function length(a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
return Math.sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec3 initialized with the given values
|
|
*
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @returns {vec3} a new 3D vector
|
|
*/
|
|
function fromValues(x, y, z) {
|
|
var out = new glMatrix.ARRAY_TYPE(3);
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = z;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one vec3 to another
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the source vector
|
|
* @returns {vec3} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a vec3 to the given values
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @returns {vec3} out
|
|
*/
|
|
function set(out, x, y, z) {
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = z;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts vector b from vector a
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiplies two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
out[0] = a[0] * b[0];
|
|
out[1] = a[1] * b[1];
|
|
out[2] = a[2] * b[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Divides two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function divide(out, a, b) {
|
|
out[0] = a[0] / b[0];
|
|
out[1] = a[1] / b[1];
|
|
out[2] = a[2] / b[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.ceil the components of a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to ceil
|
|
* @returns {vec3} out
|
|
*/
|
|
function ceil(out, a) {
|
|
out[0] = Math.ceil(a[0]);
|
|
out[1] = Math.ceil(a[1]);
|
|
out[2] = Math.ceil(a[2]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.floor the components of a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to floor
|
|
* @returns {vec3} out
|
|
*/
|
|
function floor(out, a) {
|
|
out[0] = Math.floor(a[0]);
|
|
out[1] = Math.floor(a[1]);
|
|
out[2] = Math.floor(a[2]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum of two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function min(out, a, b) {
|
|
out[0] = Math.min(a[0], b[0]);
|
|
out[1] = Math.min(a[1], b[1]);
|
|
out[2] = Math.min(a[2], b[2]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum of two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function max(out, a, b) {
|
|
out[0] = Math.max(a[0], b[0]);
|
|
out[1] = Math.max(a[1], b[1]);
|
|
out[2] = Math.max(a[2], b[2]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.round the components of a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to round
|
|
* @returns {vec3} out
|
|
*/
|
|
function round(out, a) {
|
|
out[0] = Math.round(a[0]);
|
|
out[1] = Math.round(a[1]);
|
|
out[2] = Math.round(a[2]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Scales a vec3 by a scalar number
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the vector to scale
|
|
* @param {Number} b amount to scale the vector by
|
|
* @returns {vec3} out
|
|
*/
|
|
function scale(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two vec3's after scaling the second operand by a scalar value
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @param {Number} scale the amount to scale b by before adding
|
|
* @returns {vec3} out
|
|
*/
|
|
function scaleAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the euclidian distance between two vec3's
|
|
*
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {Number} distance between a and b
|
|
*/
|
|
function distance(a, b) {
|
|
var x = b[0] - a[0];
|
|
var y = b[1] - a[1];
|
|
var z = b[2] - a[2];
|
|
return Math.sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
/**
|
|
* Calculates the squared euclidian distance between two vec3's
|
|
*
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {Number} squared distance between a and b
|
|
*/
|
|
function squaredDistance(a, b) {
|
|
var x = b[0] - a[0];
|
|
var y = b[1] - a[1];
|
|
var z = b[2] - a[2];
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
/**
|
|
* Calculates the squared length of a vec3
|
|
*
|
|
* @param {vec3} a vector to calculate squared length of
|
|
* @returns {Number} squared length of a
|
|
*/
|
|
function squaredLength(a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
/**
|
|
* Negates the components of a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to negate
|
|
* @returns {vec3} out
|
|
*/
|
|
function negate(out, a) {
|
|
out[0] = -a[0];
|
|
out[1] = -a[1];
|
|
out[2] = -a[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the inverse of the components of a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to invert
|
|
* @returns {vec3} out
|
|
*/
|
|
function inverse(out, a) {
|
|
out[0] = 1.0 / a[0];
|
|
out[1] = 1.0 / a[1];
|
|
out[2] = 1.0 / a[2];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Normalize a vec3
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a vector to normalize
|
|
* @returns {vec3} out
|
|
*/
|
|
function normalize(out, a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
var len = x * x + y * y + z * z;
|
|
if (len > 0) {
|
|
//TODO: evaluate use of glm_invsqrt here?
|
|
len = 1 / Math.sqrt(len);
|
|
out[0] = a[0] * len;
|
|
out[1] = a[1] * len;
|
|
out[2] = a[2] * len;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the dot product of two vec3's
|
|
*
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {Number} dot product of a and b
|
|
*/
|
|
function dot(a, b) {
|
|
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
}
|
|
|
|
/**
|
|
* Computes the cross product of two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function cross(out, a, b) {
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2];
|
|
var bx = b[0],
|
|
by = b[1],
|
|
bz = b[2];
|
|
|
|
out[0] = ay * bz - az * by;
|
|
out[1] = az * bx - ax * bz;
|
|
out[2] = ax * by - ay * bx;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Performs a linear interpolation between two vec3's
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {vec3} out
|
|
*/
|
|
function lerp(out, a, b, t) {
|
|
var ax = a[0];
|
|
var ay = a[1];
|
|
var az = a[2];
|
|
out[0] = ax + t * (b[0] - ax);
|
|
out[1] = ay + t * (b[1] - ay);
|
|
out[2] = az + t * (b[2] - az);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Performs a hermite interpolation with two control points
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @param {vec3} c the third operand
|
|
* @param {vec3} d the fourth operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {vec3} out
|
|
*/
|
|
function hermite(out, a, b, c, d, t) {
|
|
var factorTimes2 = t * t;
|
|
var factor1 = factorTimes2 * (2 * t - 3) + 1;
|
|
var factor2 = factorTimes2 * (t - 2) + t;
|
|
var factor3 = factorTimes2 * (t - 1);
|
|
var factor4 = factorTimes2 * (3 - 2 * t);
|
|
|
|
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
|
|
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
|
|
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Performs a bezier interpolation with two control points
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the first operand
|
|
* @param {vec3} b the second operand
|
|
* @param {vec3} c the third operand
|
|
* @param {vec3} d the fourth operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {vec3} out
|
|
*/
|
|
function bezier(out, a, b, c, d, t) {
|
|
var inverseFactor = 1 - t;
|
|
var inverseFactorTimesTwo = inverseFactor * inverseFactor;
|
|
var factorTimes2 = t * t;
|
|
var factor1 = inverseFactorTimesTwo * inverseFactor;
|
|
var factor2 = 3 * t * inverseFactorTimesTwo;
|
|
var factor3 = 3 * factorTimes2 * inverseFactor;
|
|
var factor4 = factorTimes2 * t;
|
|
|
|
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
|
|
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
|
|
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a random vector with the given scale
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
|
* @returns {vec3} out
|
|
*/
|
|
function random(out, scale) {
|
|
scale = scale || 1.0;
|
|
|
|
var r = glMatrix.RANDOM() * 2.0 * Math.PI;
|
|
var z = glMatrix.RANDOM() * 2.0 - 1.0;
|
|
var zScale = Math.sqrt(1.0 - z * z) * scale;
|
|
|
|
out[0] = Math.cos(r) * zScale;
|
|
out[1] = Math.sin(r) * zScale;
|
|
out[2] = z * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transforms the vec3 with a mat4.
|
|
* 4th vector component is implicitly '1'
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the vector to transform
|
|
* @param {mat4} m matrix to transform with
|
|
* @returns {vec3} out
|
|
*/
|
|
function transformMat4(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2];
|
|
var w = m[3] * x + m[7] * y + m[11] * z + m[15];
|
|
w = w || 1.0;
|
|
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
|
|
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
|
|
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transforms the vec3 with a mat3.
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the vector to transform
|
|
* @param {mat3} m the 3x3 matrix to transform with
|
|
* @returns {vec3} out
|
|
*/
|
|
function transformMat3(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2];
|
|
out[0] = x * m[0] + y * m[3] + z * m[6];
|
|
out[1] = x * m[1] + y * m[4] + z * m[7];
|
|
out[2] = x * m[2] + y * m[5] + z * m[8];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transforms the vec3 with a quat
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec3} a the vector to transform
|
|
* @param {quat} q quaternion to transform with
|
|
* @returns {vec3} out
|
|
*/
|
|
function transformQuat(out, a, q) {
|
|
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
|
|
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2];
|
|
var qx = q[0],
|
|
qy = q[1],
|
|
qz = q[2],
|
|
qw = q[3];
|
|
|
|
// calculate quat * vec
|
|
var ix = qw * x + qy * z - qz * y;
|
|
var iy = qw * y + qz * x - qx * z;
|
|
var iz = qw * z + qx * y - qy * x;
|
|
var iw = -qx * x - qy * y - qz * z;
|
|
|
|
// calculate result * inverse quat
|
|
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
|
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
|
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotate a 3D vector around the x-axis
|
|
* @param {vec3} out The receiving vec3
|
|
* @param {vec3} a The vec3 point to rotate
|
|
* @param {vec3} b The origin of the rotation
|
|
* @param {Number} c The angle of rotation
|
|
* @returns {vec3} out
|
|
*/
|
|
function rotateX(out, a, b, c) {
|
|
var p = [],
|
|
r = [];
|
|
//Translate point to the origin
|
|
p[0] = a[0] - b[0];
|
|
p[1] = a[1] - b[1];
|
|
p[2] = a[2] - b[2];
|
|
|
|
//perform rotation
|
|
r[0] = p[0];
|
|
r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c);
|
|
r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c);
|
|
|
|
//translate to correct position
|
|
out[0] = r[0] + b[0];
|
|
out[1] = r[1] + b[1];
|
|
out[2] = r[2] + b[2];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotate a 3D vector around the y-axis
|
|
* @param {vec3} out The receiving vec3
|
|
* @param {vec3} a The vec3 point to rotate
|
|
* @param {vec3} b The origin of the rotation
|
|
* @param {Number} c The angle of rotation
|
|
* @returns {vec3} out
|
|
*/
|
|
function rotateY(out, a, b, c) {
|
|
var p = [],
|
|
r = [];
|
|
//Translate point to the origin
|
|
p[0] = a[0] - b[0];
|
|
p[1] = a[1] - b[1];
|
|
p[2] = a[2] - b[2];
|
|
|
|
//perform rotation
|
|
r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c);
|
|
r[1] = p[1];
|
|
r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c);
|
|
|
|
//translate to correct position
|
|
out[0] = r[0] + b[0];
|
|
out[1] = r[1] + b[1];
|
|
out[2] = r[2] + b[2];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotate a 3D vector around the z-axis
|
|
* @param {vec3} out The receiving vec3
|
|
* @param {vec3} a The vec3 point to rotate
|
|
* @param {vec3} b The origin of the rotation
|
|
* @param {Number} c The angle of rotation
|
|
* @returns {vec3} out
|
|
*/
|
|
function rotateZ(out, a, b, c) {
|
|
var p = [],
|
|
r = [];
|
|
//Translate point to the origin
|
|
p[0] = a[0] - b[0];
|
|
p[1] = a[1] - b[1];
|
|
p[2] = a[2] - b[2];
|
|
|
|
//perform rotation
|
|
r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c);
|
|
r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c);
|
|
r[2] = p[2];
|
|
|
|
//translate to correct position
|
|
out[0] = r[0] + b[0];
|
|
out[1] = r[1] + b[1];
|
|
out[2] = r[2] + b[2];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Get the angle between two 3D vectors
|
|
* @param {vec3} a The first operand
|
|
* @param {vec3} b The second operand
|
|
* @returns {Number} The angle in radians
|
|
*/
|
|
function angle(a, b) {
|
|
var tempA = fromValues(a[0], a[1], a[2]);
|
|
var tempB = fromValues(b[0], b[1], b[2]);
|
|
|
|
normalize(tempA, tempA);
|
|
normalize(tempB, tempB);
|
|
|
|
var cosine = dot(tempA, tempB);
|
|
|
|
if (cosine > 1.0) {
|
|
return 0;
|
|
} else if (cosine < -1.0) {
|
|
return Math.PI;
|
|
} else {
|
|
return Math.acos(cosine);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a vector
|
|
*
|
|
* @param {vec3} a vector to represent as a string
|
|
* @returns {String} string representation of the vector
|
|
*/
|
|
function str(a) {
|
|
return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {vec3} a The first vector.
|
|
* @param {vec3} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors have approximately the same elements in the same position.
|
|
*
|
|
* @param {vec3} a The first vector.
|
|
* @param {vec3} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link vec3.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/**
|
|
* Alias for {@link vec3.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link vec3.divide}
|
|
* @function
|
|
*/
|
|
var div = exports.div = divide;
|
|
|
|
/**
|
|
* Alias for {@link vec3.distance}
|
|
* @function
|
|
*/
|
|
var dist = exports.dist = distance;
|
|
|
|
/**
|
|
* Alias for {@link vec3.squaredDistance}
|
|
* @function
|
|
*/
|
|
var sqrDist = exports.sqrDist = squaredDistance;
|
|
|
|
/**
|
|
* Alias for {@link vec3.length}
|
|
* @function
|
|
*/
|
|
var len = exports.len = length;
|
|
|
|
/**
|
|
* Alias for {@link vec3.squaredLength}
|
|
* @function
|
|
*/
|
|
var sqrLen = exports.sqrLen = squaredLength;
|
|
|
|
/**
|
|
* Perform some operation over an array of vec3s.
|
|
*
|
|
* @param {Array} a the array of vectors to iterate over
|
|
* @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
|
|
* @param {Number} offset Number of elements to skip at the beginning of the array
|
|
* @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
|
|
* @param {Function} fn Function to call for each vector in the array
|
|
* @param {Object} [arg] additional argument to pass to fn
|
|
* @returns {Array} a
|
|
* @function
|
|
*/
|
|
var forEach = exports.forEach = function () {
|
|
var vec = create();
|
|
|
|
return function (a, stride, offset, count, fn, arg) {
|
|
var i = void 0,
|
|
l = void 0;
|
|
if (!stride) {
|
|
stride = 3;
|
|
}
|
|
|
|
if (!offset) {
|
|
offset = 0;
|
|
}
|
|
|
|
if (count) {
|
|
l = Math.min(count * stride + offset, a.length);
|
|
} else {
|
|
l = a.length;
|
|
}
|
|
|
|
for (i = offset; i < l; i += stride) {
|
|
vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];
|
|
fn(vec, vec, arg);
|
|
a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];
|
|
}
|
|
|
|
return a;
|
|
};
|
|
}();
|
|
|
|
/***/ }),
|
|
/* 3 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.fromValues = fromValues;
|
|
exports.copy = copy;
|
|
exports.set = set;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiply = multiply;
|
|
exports.divide = divide;
|
|
exports.ceil = ceil;
|
|
exports.floor = floor;
|
|
exports.min = min;
|
|
exports.max = max;
|
|
exports.round = round;
|
|
exports.scale = scale;
|
|
exports.scaleAndAdd = scaleAndAdd;
|
|
exports.distance = distance;
|
|
exports.squaredDistance = squaredDistance;
|
|
exports.length = length;
|
|
exports.squaredLength = squaredLength;
|
|
exports.negate = negate;
|
|
exports.inverse = inverse;
|
|
exports.normalize = normalize;
|
|
exports.dot = dot;
|
|
exports.lerp = lerp;
|
|
exports.random = random;
|
|
exports.transformMat4 = transformMat4;
|
|
exports.transformQuat = transformQuat;
|
|
exports.str = str;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 4 Dimensional Vector
|
|
* @module vec4
|
|
*/
|
|
|
|
/**
|
|
* Creates a new, empty vec4
|
|
*
|
|
* @returns {vec4} a new 4D vector
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec4 initialized with values from an existing vector
|
|
*
|
|
* @param {vec4} a vector to clone
|
|
* @returns {vec4} a new 4D vector
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec4 initialized with the given values
|
|
*
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @param {Number} w W component
|
|
* @returns {vec4} a new 4D vector
|
|
*/
|
|
function fromValues(x, y, z, w) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = z;
|
|
out[3] = w;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one vec4 to another
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the source vector
|
|
* @returns {vec4} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a vec4 to the given values
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @param {Number} w W component
|
|
* @returns {vec4} out
|
|
*/
|
|
function set(out, x, y, z, w) {
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = z;
|
|
out[3] = w;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts vector b from vector a
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiplies two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
out[0] = a[0] * b[0];
|
|
out[1] = a[1] * b[1];
|
|
out[2] = a[2] * b[2];
|
|
out[3] = a[3] * b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Divides two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function divide(out, a, b) {
|
|
out[0] = a[0] / b[0];
|
|
out[1] = a[1] / b[1];
|
|
out[2] = a[2] / b[2];
|
|
out[3] = a[3] / b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.ceil the components of a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to ceil
|
|
* @returns {vec4} out
|
|
*/
|
|
function ceil(out, a) {
|
|
out[0] = Math.ceil(a[0]);
|
|
out[1] = Math.ceil(a[1]);
|
|
out[2] = Math.ceil(a[2]);
|
|
out[3] = Math.ceil(a[3]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.floor the components of a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to floor
|
|
* @returns {vec4} out
|
|
*/
|
|
function floor(out, a) {
|
|
out[0] = Math.floor(a[0]);
|
|
out[1] = Math.floor(a[1]);
|
|
out[2] = Math.floor(a[2]);
|
|
out[3] = Math.floor(a[3]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum of two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function min(out, a, b) {
|
|
out[0] = Math.min(a[0], b[0]);
|
|
out[1] = Math.min(a[1], b[1]);
|
|
out[2] = Math.min(a[2], b[2]);
|
|
out[3] = Math.min(a[3], b[3]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the maximum of two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {vec4} out
|
|
*/
|
|
function max(out, a, b) {
|
|
out[0] = Math.max(a[0], b[0]);
|
|
out[1] = Math.max(a[1], b[1]);
|
|
out[2] = Math.max(a[2], b[2]);
|
|
out[3] = Math.max(a[3], b[3]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Math.round the components of a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to round
|
|
* @returns {vec4} out
|
|
*/
|
|
function round(out, a) {
|
|
out[0] = Math.round(a[0]);
|
|
out[1] = Math.round(a[1]);
|
|
out[2] = Math.round(a[2]);
|
|
out[3] = Math.round(a[3]);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Scales a vec4 by a scalar number
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the vector to scale
|
|
* @param {Number} b amount to scale the vector by
|
|
* @returns {vec4} out
|
|
*/
|
|
function scale(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two vec4's after scaling the second operand by a scalar value
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @param {Number} scale the amount to scale b by before adding
|
|
* @returns {vec4} out
|
|
*/
|
|
function scaleAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
out[3] = a[3] + b[3] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the euclidian distance between two vec4's
|
|
*
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {Number} distance between a and b
|
|
*/
|
|
function distance(a, b) {
|
|
var x = b[0] - a[0];
|
|
var y = b[1] - a[1];
|
|
var z = b[2] - a[2];
|
|
var w = b[3] - a[3];
|
|
return Math.sqrt(x * x + y * y + z * z + w * w);
|
|
}
|
|
|
|
/**
|
|
* Calculates the squared euclidian distance between two vec4's
|
|
*
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {Number} squared distance between a and b
|
|
*/
|
|
function squaredDistance(a, b) {
|
|
var x = b[0] - a[0];
|
|
var y = b[1] - a[1];
|
|
var z = b[2] - a[2];
|
|
var w = b[3] - a[3];
|
|
return x * x + y * y + z * z + w * w;
|
|
}
|
|
|
|
/**
|
|
* Calculates the length of a vec4
|
|
*
|
|
* @param {vec4} a vector to calculate length of
|
|
* @returns {Number} length of a
|
|
*/
|
|
function length(a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
var w = a[3];
|
|
return Math.sqrt(x * x + y * y + z * z + w * w);
|
|
}
|
|
|
|
/**
|
|
* Calculates the squared length of a vec4
|
|
*
|
|
* @param {vec4} a vector to calculate squared length of
|
|
* @returns {Number} squared length of a
|
|
*/
|
|
function squaredLength(a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
var w = a[3];
|
|
return x * x + y * y + z * z + w * w;
|
|
}
|
|
|
|
/**
|
|
* Negates the components of a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to negate
|
|
* @returns {vec4} out
|
|
*/
|
|
function negate(out, a) {
|
|
out[0] = -a[0];
|
|
out[1] = -a[1];
|
|
out[2] = -a[2];
|
|
out[3] = -a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the inverse of the components of a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to invert
|
|
* @returns {vec4} out
|
|
*/
|
|
function inverse(out, a) {
|
|
out[0] = 1.0 / a[0];
|
|
out[1] = 1.0 / a[1];
|
|
out[2] = 1.0 / a[2];
|
|
out[3] = 1.0 / a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Normalize a vec4
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a vector to normalize
|
|
* @returns {vec4} out
|
|
*/
|
|
function normalize(out, a) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
var z = a[2];
|
|
var w = a[3];
|
|
var len = x * x + y * y + z * z + w * w;
|
|
if (len > 0) {
|
|
len = 1 / Math.sqrt(len);
|
|
out[0] = x * len;
|
|
out[1] = y * len;
|
|
out[2] = z * len;
|
|
out[3] = w * len;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the dot product of two vec4's
|
|
*
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @returns {Number} dot product of a and b
|
|
*/
|
|
function dot(a, b) {
|
|
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
|
}
|
|
|
|
/**
|
|
* Performs a linear interpolation between two vec4's
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the first operand
|
|
* @param {vec4} b the second operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {vec4} out
|
|
*/
|
|
function lerp(out, a, b, t) {
|
|
var ax = a[0];
|
|
var ay = a[1];
|
|
var az = a[2];
|
|
var aw = a[3];
|
|
out[0] = ax + t * (b[0] - ax);
|
|
out[1] = ay + t * (b[1] - ay);
|
|
out[2] = az + t * (b[2] - az);
|
|
out[3] = aw + t * (b[3] - aw);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a random vector with the given scale
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
|
* @returns {vec4} out
|
|
*/
|
|
function random(out, vectorScale) {
|
|
vectorScale = vectorScale || 1.0;
|
|
|
|
//TODO: This is a pretty awful way of doing this. Find something better.
|
|
out[0] = glMatrix.RANDOM();
|
|
out[1] = glMatrix.RANDOM();
|
|
out[2] = glMatrix.RANDOM();
|
|
out[3] = glMatrix.RANDOM();
|
|
normalize(out, out);
|
|
scale(out, out, vectorScale);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transforms the vec4 with a mat4.
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the vector to transform
|
|
* @param {mat4} m matrix to transform with
|
|
* @returns {vec4} out
|
|
*/
|
|
function transformMat4(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2],
|
|
w = a[3];
|
|
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
|
|
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
|
|
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
|
|
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transforms the vec4 with a quat
|
|
*
|
|
* @param {vec4} out the receiving vector
|
|
* @param {vec4} a the vector to transform
|
|
* @param {quat} q quaternion to transform with
|
|
* @returns {vec4} out
|
|
*/
|
|
function transformQuat(out, a, q) {
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2];
|
|
var qx = q[0],
|
|
qy = q[1],
|
|
qz = q[2],
|
|
qw = q[3];
|
|
|
|
// calculate quat * vec
|
|
var ix = qw * x + qy * z - qz * y;
|
|
var iy = qw * y + qz * x - qx * z;
|
|
var iz = qw * z + qx * y - qy * x;
|
|
var iw = -qx * x - qy * y - qz * z;
|
|
|
|
// calculate result * inverse quat
|
|
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
|
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
|
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a vector
|
|
*
|
|
* @param {vec4} a vector to represent as a string
|
|
* @returns {String} string representation of the vector
|
|
*/
|
|
function str(a) {
|
|
return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {vec4} a The first vector.
|
|
* @param {vec4} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors have approximately the same elements in the same position.
|
|
*
|
|
* @param {vec4} a The first vector.
|
|
* @param {vec4} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link vec4.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/**
|
|
* Alias for {@link vec4.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link vec4.divide}
|
|
* @function
|
|
*/
|
|
var div = exports.div = divide;
|
|
|
|
/**
|
|
* Alias for {@link vec4.distance}
|
|
* @function
|
|
*/
|
|
var dist = exports.dist = distance;
|
|
|
|
/**
|
|
* Alias for {@link vec4.squaredDistance}
|
|
* @function
|
|
*/
|
|
var sqrDist = exports.sqrDist = squaredDistance;
|
|
|
|
/**
|
|
* Alias for {@link vec4.length}
|
|
* @function
|
|
*/
|
|
var len = exports.len = length;
|
|
|
|
/**
|
|
* Alias for {@link vec4.squaredLength}
|
|
* @function
|
|
*/
|
|
var sqrLen = exports.sqrLen = squaredLength;
|
|
|
|
/**
|
|
* Perform some operation over an array of vec4s.
|
|
*
|
|
* @param {Array} a the array of vectors to iterate over
|
|
* @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
|
|
* @param {Number} offset Number of elements to skip at the beginning of the array
|
|
* @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
|
|
* @param {Function} fn Function to call for each vector in the array
|
|
* @param {Object} [arg] additional argument to pass to fn
|
|
* @returns {Array} a
|
|
* @function
|
|
*/
|
|
var forEach = exports.forEach = function () {
|
|
var vec = create();
|
|
|
|
return function (a, stride, offset, count, fn, arg) {
|
|
var i = void 0,
|
|
l = void 0;
|
|
if (!stride) {
|
|
stride = 4;
|
|
}
|
|
|
|
if (!offset) {
|
|
offset = 0;
|
|
}
|
|
|
|
if (count) {
|
|
l = Math.min(count * stride + offset, a.length);
|
|
} else {
|
|
l = a.length;
|
|
}
|
|
|
|
for (i = offset; i < l; i += stride) {
|
|
vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3];
|
|
fn(vec, vec, arg);
|
|
a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3];
|
|
}
|
|
|
|
return a;
|
|
};
|
|
}();
|
|
|
|
/***/ }),
|
|
/* 4 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.vec4 = exports.vec3 = exports.vec2 = exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.glMatrix = undefined;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
var _mat = __webpack_require__(5);
|
|
|
|
var mat2 = _interopRequireWildcard(_mat);
|
|
|
|
var _mat2d = __webpack_require__(6);
|
|
|
|
var mat2d = _interopRequireWildcard(_mat2d);
|
|
|
|
var _mat2 = __webpack_require__(1);
|
|
|
|
var mat3 = _interopRequireWildcard(_mat2);
|
|
|
|
var _mat3 = __webpack_require__(7);
|
|
|
|
var mat4 = _interopRequireWildcard(_mat3);
|
|
|
|
var _quat = __webpack_require__(8);
|
|
|
|
var quat = _interopRequireWildcard(_quat);
|
|
|
|
var _vec = __webpack_require__(9);
|
|
|
|
var vec2 = _interopRequireWildcard(_vec);
|
|
|
|
var _vec2 = __webpack_require__(2);
|
|
|
|
var vec3 = _interopRequireWildcard(_vec2);
|
|
|
|
var _vec3 = __webpack_require__(3);
|
|
|
|
var vec4 = _interopRequireWildcard(_vec3);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
exports.glMatrix = glMatrix;
|
|
exports.mat2 = mat2;
|
|
exports.mat2d = mat2d;
|
|
exports.mat3 = mat3;
|
|
exports.mat4 = mat4;
|
|
exports.quat = quat;
|
|
exports.vec2 = vec2;
|
|
exports.vec3 = vec3;
|
|
exports.vec4 = vec4; /**
|
|
* @fileoverview gl-matrix - High performance matrix and vector operations
|
|
* @author Brandon Jones
|
|
* @author Colin MacKenzie IV
|
|
* @version 2.4.0
|
|
*/
|
|
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
// END HEADER
|
|
|
|
/***/ }),
|
|
/* 5 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.sub = exports.mul = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.copy = copy;
|
|
exports.identity = identity;
|
|
exports.fromValues = fromValues;
|
|
exports.set = set;
|
|
exports.transpose = transpose;
|
|
exports.invert = invert;
|
|
exports.adjoint = adjoint;
|
|
exports.determinant = determinant;
|
|
exports.multiply = multiply;
|
|
exports.rotate = rotate;
|
|
exports.scale = scale;
|
|
exports.fromRotation = fromRotation;
|
|
exports.fromScaling = fromScaling;
|
|
exports.str = str;
|
|
exports.frob = frob;
|
|
exports.LDU = LDU;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
exports.multiplyScalar = multiplyScalar;
|
|
exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 2x2 Matrix
|
|
* @module mat2
|
|
*/
|
|
|
|
/**
|
|
* Creates a new identity mat2
|
|
*
|
|
* @returns {mat2} a new 2x2 matrix
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new mat2 initialized with values from an existing matrix
|
|
*
|
|
* @param {mat2} a matrix to clone
|
|
* @returns {mat2} a new 2x2 matrix
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one mat2 to another
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set a mat2 to the identity matrix
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
function identity(out) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Create a new mat2 with the given values
|
|
*
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 2)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 3)
|
|
* @returns {mat2} out A new 2x2 matrix
|
|
*/
|
|
function fromValues(m00, m01, m10, m11) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m10;
|
|
out[3] = m11;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a mat2 to the given values
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 2)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 3)
|
|
* @returns {mat2} out
|
|
*/
|
|
function set(out, m00, m01, m10, m11) {
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m10;
|
|
out[3] = m11;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transpose the values of a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
function transpose(out, a) {
|
|
// If we are transposing ourselves we can skip a few steps but have to cache
|
|
// some values
|
|
if (out === a) {
|
|
var a1 = a[1];
|
|
out[1] = a[2];
|
|
out[2] = a1;
|
|
} else {
|
|
out[0] = a[0];
|
|
out[1] = a[2];
|
|
out[2] = a[1];
|
|
out[3] = a[3];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Inverts a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
function invert(out, a) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
|
|
// Calculate the determinant
|
|
var det = a0 * a3 - a2 * a1;
|
|
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = a3 * det;
|
|
out[1] = -a1 * det;
|
|
out[2] = -a2 * det;
|
|
out[3] = a0 * det;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the adjugate of a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
function adjoint(out, a) {
|
|
// Caching this value is nessecary if out == a
|
|
var a0 = a[0];
|
|
out[0] = a[3];
|
|
out[1] = -a[1];
|
|
out[2] = -a[2];
|
|
out[3] = a0;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the determinant of a mat2
|
|
*
|
|
* @param {mat2} a the source matrix
|
|
* @returns {Number} determinant of a
|
|
*/
|
|
function determinant(a) {
|
|
return a[0] * a[3] - a[2] * a[1];
|
|
}
|
|
|
|
/**
|
|
* Multiplies two mat2's
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3];
|
|
out[0] = a0 * b0 + a2 * b1;
|
|
out[1] = a1 * b0 + a3 * b1;
|
|
out[2] = a0 * b2 + a2 * b3;
|
|
out[3] = a1 * b2 + a3 * b3;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a mat2 by the given angle
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2} out
|
|
*/
|
|
function rotate(out, a, rad) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
out[0] = a0 * c + a2 * s;
|
|
out[1] = a1 * c + a3 * s;
|
|
out[2] = a0 * -s + a2 * c;
|
|
out[3] = a1 * -s + a3 * c;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Scales the mat2 by the dimensions in the given vec2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to rotate
|
|
* @param {vec2} v the vec2 to scale the matrix by
|
|
* @returns {mat2} out
|
|
**/
|
|
function scale(out, a, v) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var v0 = v[0],
|
|
v1 = v[1];
|
|
out[0] = a0 * v0;
|
|
out[1] = a1 * v0;
|
|
out[2] = a2 * v1;
|
|
out[3] = a3 * v1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a given angle
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2.identity(dest);
|
|
* mat2.rotate(dest, dest, rad);
|
|
*
|
|
* @param {mat2} out mat2 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2} out
|
|
*/
|
|
function fromRotation(out, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
out[0] = c;
|
|
out[1] = s;
|
|
out[2] = -s;
|
|
out[3] = c;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector scaling
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2.identity(dest);
|
|
* mat2.scale(dest, dest, vec);
|
|
*
|
|
* @param {mat2} out mat2 receiving operation result
|
|
* @param {vec2} v Scaling vector
|
|
* @returns {mat2} out
|
|
*/
|
|
function fromScaling(out, v) {
|
|
out[0] = v[0];
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = v[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a mat2
|
|
*
|
|
* @param {mat2} a matrix to represent as a string
|
|
* @returns {String} string representation of the matrix
|
|
*/
|
|
function str(a) {
|
|
return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns Frobenius norm of a mat2
|
|
*
|
|
* @param {mat2} a the matrix to calculate Frobenius norm of
|
|
* @returns {Number} Frobenius norm
|
|
*/
|
|
function frob(a) {
|
|
return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2));
|
|
}
|
|
|
|
/**
|
|
* Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
|
|
* @param {mat2} L the lower triangular matrix
|
|
* @param {mat2} D the diagonal matrix
|
|
* @param {mat2} U the upper triangular matrix
|
|
* @param {mat2} a the input matrix to factorize
|
|
*/
|
|
|
|
function LDU(L, D, U, a) {
|
|
L[2] = a[2] / a[0];
|
|
U[0] = a[0];
|
|
U[1] = a[1];
|
|
U[3] = a[3] - L[2] * U[1];
|
|
return [L, D, U];
|
|
}
|
|
|
|
/**
|
|
* Adds two mat2's
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts matrix b from matrix a
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {mat2} a The first matrix.
|
|
* @param {mat2} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
|
*
|
|
* @param {mat2} a The first matrix.
|
|
* @param {mat2} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
|
|
}
|
|
|
|
/**
|
|
* Multiply each element of the matrix by a scalar.
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to scale
|
|
* @param {Number} b amount to scale the matrix's elements by
|
|
* @returns {mat2} out
|
|
*/
|
|
function multiplyScalar(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two mat2's after multiplying each element of the second operand by a scalar value.
|
|
*
|
|
* @param {mat2} out the receiving vector
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @param {Number} scale the amount to scale b's elements by before adding
|
|
* @returns {mat2} out
|
|
*/
|
|
function multiplyScalarAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
out[3] = a[3] + b[3] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link mat2.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link mat2.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/***/ }),
|
|
/* 6 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.sub = exports.mul = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.copy = copy;
|
|
exports.identity = identity;
|
|
exports.fromValues = fromValues;
|
|
exports.set = set;
|
|
exports.invert = invert;
|
|
exports.determinant = determinant;
|
|
exports.multiply = multiply;
|
|
exports.rotate = rotate;
|
|
exports.scale = scale;
|
|
exports.translate = translate;
|
|
exports.fromRotation = fromRotation;
|
|
exports.fromScaling = fromScaling;
|
|
exports.fromTranslation = fromTranslation;
|
|
exports.str = str;
|
|
exports.frob = frob;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiplyScalar = multiplyScalar;
|
|
exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 2x3 Matrix
|
|
* @module mat2d
|
|
*
|
|
* @description
|
|
* A mat2d contains six elements defined as:
|
|
* <pre>
|
|
* [a, c, tx,
|
|
* b, d, ty]
|
|
* </pre>
|
|
* This is a short form for the 3x3 matrix:
|
|
* <pre>
|
|
* [a, c, tx,
|
|
* b, d, ty,
|
|
* 0, 0, 1]
|
|
* </pre>
|
|
* The last row is ignored so the array is shorter and operations are faster.
|
|
*/
|
|
|
|
/**
|
|
* Creates a new identity mat2d
|
|
*
|
|
* @returns {mat2d} a new 2x3 matrix
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(6);
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
out[4] = 0;
|
|
out[5] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new mat2d initialized with values from an existing matrix
|
|
*
|
|
* @param {mat2d} a matrix to clone
|
|
* @returns {mat2d} a new 2x3 matrix
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(6);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one mat2d to another
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the source matrix
|
|
* @returns {mat2d} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set a mat2d to the identity matrix
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @returns {mat2d} out
|
|
*/
|
|
function identity(out) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
out[4] = 0;
|
|
out[5] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Create a new mat2d with the given values
|
|
*
|
|
* @param {Number} a Component A (index 0)
|
|
* @param {Number} b Component B (index 1)
|
|
* @param {Number} c Component C (index 2)
|
|
* @param {Number} d Component D (index 3)
|
|
* @param {Number} tx Component TX (index 4)
|
|
* @param {Number} ty Component TY (index 5)
|
|
* @returns {mat2d} A new mat2d
|
|
*/
|
|
function fromValues(a, b, c, d, tx, ty) {
|
|
var out = new glMatrix.ARRAY_TYPE(6);
|
|
out[0] = a;
|
|
out[1] = b;
|
|
out[2] = c;
|
|
out[3] = d;
|
|
out[4] = tx;
|
|
out[5] = ty;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a mat2d to the given values
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {Number} a Component A (index 0)
|
|
* @param {Number} b Component B (index 1)
|
|
* @param {Number} c Component C (index 2)
|
|
* @param {Number} d Component D (index 3)
|
|
* @param {Number} tx Component TX (index 4)
|
|
* @param {Number} ty Component TY (index 5)
|
|
* @returns {mat2d} out
|
|
*/
|
|
function set(out, a, b, c, d, tx, ty) {
|
|
out[0] = a;
|
|
out[1] = b;
|
|
out[2] = c;
|
|
out[3] = d;
|
|
out[4] = tx;
|
|
out[5] = ty;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Inverts a mat2d
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the source matrix
|
|
* @returns {mat2d} out
|
|
*/
|
|
function invert(out, a) {
|
|
var aa = a[0],
|
|
ab = a[1],
|
|
ac = a[2],
|
|
ad = a[3];
|
|
var atx = a[4],
|
|
aty = a[5];
|
|
|
|
var det = aa * ad - ab * ac;
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = ad * det;
|
|
out[1] = -ab * det;
|
|
out[2] = -ac * det;
|
|
out[3] = aa * det;
|
|
out[4] = (ac * aty - ad * atx) * det;
|
|
out[5] = (ab * atx - aa * aty) * det;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the determinant of a mat2d
|
|
*
|
|
* @param {mat2d} a the source matrix
|
|
* @returns {Number} determinant of a
|
|
*/
|
|
function determinant(a) {
|
|
return a[0] * a[3] - a[1] * a[2];
|
|
}
|
|
|
|
/**
|
|
* Multiplies two mat2d's
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the first operand
|
|
* @param {mat2d} b the second operand
|
|
* @returns {mat2d} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3],
|
|
b4 = b[4],
|
|
b5 = b[5];
|
|
out[0] = a0 * b0 + a2 * b1;
|
|
out[1] = a1 * b0 + a3 * b1;
|
|
out[2] = a0 * b2 + a2 * b3;
|
|
out[3] = a1 * b2 + a3 * b3;
|
|
out[4] = a0 * b4 + a2 * b5 + a4;
|
|
out[5] = a1 * b4 + a3 * b5 + a5;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a mat2d by the given angle
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2d} out
|
|
*/
|
|
function rotate(out, a, rad) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5];
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
out[0] = a0 * c + a2 * s;
|
|
out[1] = a1 * c + a3 * s;
|
|
out[2] = a0 * -s + a2 * c;
|
|
out[3] = a1 * -s + a3 * c;
|
|
out[4] = a4;
|
|
out[5] = a5;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Scales the mat2d by the dimensions in the given vec2
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the matrix to translate
|
|
* @param {vec2} v the vec2 to scale the matrix by
|
|
* @returns {mat2d} out
|
|
**/
|
|
function scale(out, a, v) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5];
|
|
var v0 = v[0],
|
|
v1 = v[1];
|
|
out[0] = a0 * v0;
|
|
out[1] = a1 * v0;
|
|
out[2] = a2 * v1;
|
|
out[3] = a3 * v1;
|
|
out[4] = a4;
|
|
out[5] = a5;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Translates the mat2d by the dimensions in the given vec2
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the matrix to translate
|
|
* @param {vec2} v the vec2 to translate the matrix by
|
|
* @returns {mat2d} out
|
|
**/
|
|
function translate(out, a, v) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5];
|
|
var v0 = v[0],
|
|
v1 = v[1];
|
|
out[0] = a0;
|
|
out[1] = a1;
|
|
out[2] = a2;
|
|
out[3] = a3;
|
|
out[4] = a0 * v0 + a2 * v1 + a4;
|
|
out[5] = a1 * v0 + a3 * v1 + a5;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a given angle
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2d.identity(dest);
|
|
* mat2d.rotate(dest, dest, rad);
|
|
*
|
|
* @param {mat2d} out mat2d receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2d} out
|
|
*/
|
|
function fromRotation(out, rad) {
|
|
var s = Math.sin(rad),
|
|
c = Math.cos(rad);
|
|
out[0] = c;
|
|
out[1] = s;
|
|
out[2] = -s;
|
|
out[3] = c;
|
|
out[4] = 0;
|
|
out[5] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector scaling
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2d.identity(dest);
|
|
* mat2d.scale(dest, dest, vec);
|
|
*
|
|
* @param {mat2d} out mat2d receiving operation result
|
|
* @param {vec2} v Scaling vector
|
|
* @returns {mat2d} out
|
|
*/
|
|
function fromScaling(out, v) {
|
|
out[0] = v[0];
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = v[1];
|
|
out[4] = 0;
|
|
out[5] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector translation
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2d.identity(dest);
|
|
* mat2d.translate(dest, dest, vec);
|
|
*
|
|
* @param {mat2d} out mat2d receiving operation result
|
|
* @param {vec2} v Translation vector
|
|
* @returns {mat2d} out
|
|
*/
|
|
function fromTranslation(out, v) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
out[4] = v[0];
|
|
out[5] = v[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a mat2d
|
|
*
|
|
* @param {mat2d} a matrix to represent as a string
|
|
* @returns {String} string representation of the matrix
|
|
*/
|
|
function str(a) {
|
|
return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns Frobenius norm of a mat2d
|
|
*
|
|
* @param {mat2d} a the matrix to calculate Frobenius norm of
|
|
* @returns {Number} Frobenius norm
|
|
*/
|
|
function frob(a) {
|
|
return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1);
|
|
}
|
|
|
|
/**
|
|
* Adds two mat2d's
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the first operand
|
|
* @param {mat2d} b the second operand
|
|
* @returns {mat2d} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
out[4] = a[4] + b[4];
|
|
out[5] = a[5] + b[5];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts matrix b from matrix a
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the first operand
|
|
* @param {mat2d} b the second operand
|
|
* @returns {mat2d} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
out[4] = a[4] - b[4];
|
|
out[5] = a[5] - b[5];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiply each element of the matrix by a scalar.
|
|
*
|
|
* @param {mat2d} out the receiving matrix
|
|
* @param {mat2d} a the matrix to scale
|
|
* @param {Number} b amount to scale the matrix's elements by
|
|
* @returns {mat2d} out
|
|
*/
|
|
function multiplyScalar(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
out[4] = a[4] * b;
|
|
out[5] = a[5] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two mat2d's after multiplying each element of the second operand by a scalar value.
|
|
*
|
|
* @param {mat2d} out the receiving vector
|
|
* @param {mat2d} a the first operand
|
|
* @param {mat2d} b the second operand
|
|
* @param {Number} scale the amount to scale b's elements by before adding
|
|
* @returns {mat2d} out
|
|
*/
|
|
function multiplyScalarAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
out[3] = a[3] + b[3] * scale;
|
|
out[4] = a[4] + b[4] * scale;
|
|
out[5] = a[5] + b[5] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {mat2d} a The first matrix.
|
|
* @param {mat2d} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
|
*
|
|
* @param {mat2d} a The first matrix.
|
|
* @param {mat2d} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3],
|
|
a4 = a[4],
|
|
a5 = a[5];
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3],
|
|
b4 = b[4],
|
|
b5 = b[5];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link mat2d.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link mat2d.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/***/ }),
|
|
/* 7 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.sub = exports.mul = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.copy = copy;
|
|
exports.fromValues = fromValues;
|
|
exports.set = set;
|
|
exports.identity = identity;
|
|
exports.transpose = transpose;
|
|
exports.invert = invert;
|
|
exports.adjoint = adjoint;
|
|
exports.determinant = determinant;
|
|
exports.multiply = multiply;
|
|
exports.translate = translate;
|
|
exports.scale = scale;
|
|
exports.rotate = rotate;
|
|
exports.rotateX = rotateX;
|
|
exports.rotateY = rotateY;
|
|
exports.rotateZ = rotateZ;
|
|
exports.fromTranslation = fromTranslation;
|
|
exports.fromScaling = fromScaling;
|
|
exports.fromRotation = fromRotation;
|
|
exports.fromXRotation = fromXRotation;
|
|
exports.fromYRotation = fromYRotation;
|
|
exports.fromZRotation = fromZRotation;
|
|
exports.fromRotationTranslation = fromRotationTranslation;
|
|
exports.getTranslation = getTranslation;
|
|
exports.getScaling = getScaling;
|
|
exports.getRotation = getRotation;
|
|
exports.fromRotationTranslationScale = fromRotationTranslationScale;
|
|
exports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin;
|
|
exports.fromQuat = fromQuat;
|
|
exports.frustum = frustum;
|
|
exports.perspective = perspective;
|
|
exports.perspectiveFromFieldOfView = perspectiveFromFieldOfView;
|
|
exports.ortho = ortho;
|
|
exports.lookAt = lookAt;
|
|
exports.targetTo = targetTo;
|
|
exports.str = str;
|
|
exports.frob = frob;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiplyScalar = multiplyScalar;
|
|
exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 4x4 Matrix
|
|
* @module mat4
|
|
*/
|
|
|
|
/**
|
|
* Creates a new identity mat4
|
|
*
|
|
* @returns {mat4} a new 4x4 matrix
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(16);
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = 1;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 1;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new mat4 initialized with values from an existing matrix
|
|
*
|
|
* @param {mat4} a matrix to clone
|
|
* @returns {mat4} a new 4x4 matrix
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(16);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[8] = a[8];
|
|
out[9] = a[9];
|
|
out[10] = a[10];
|
|
out[11] = a[11];
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one mat4 to another
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the source matrix
|
|
* @returns {mat4} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[8] = a[8];
|
|
out[9] = a[9];
|
|
out[10] = a[10];
|
|
out[11] = a[11];
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Create a new mat4 with the given values
|
|
*
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
|
* @param {Number} m03 Component in column 0, row 3 position (index 3)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 4)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 5)
|
|
* @param {Number} m12 Component in column 1, row 2 position (index 6)
|
|
* @param {Number} m13 Component in column 1, row 3 position (index 7)
|
|
* @param {Number} m20 Component in column 2, row 0 position (index 8)
|
|
* @param {Number} m21 Component in column 2, row 1 position (index 9)
|
|
* @param {Number} m22 Component in column 2, row 2 position (index 10)
|
|
* @param {Number} m23 Component in column 2, row 3 position (index 11)
|
|
* @param {Number} m30 Component in column 3, row 0 position (index 12)
|
|
* @param {Number} m31 Component in column 3, row 1 position (index 13)
|
|
* @param {Number} m32 Component in column 3, row 2 position (index 14)
|
|
* @param {Number} m33 Component in column 3, row 3 position (index 15)
|
|
* @returns {mat4} A new mat4
|
|
*/
|
|
function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
|
|
var out = new glMatrix.ARRAY_TYPE(16);
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m02;
|
|
out[3] = m03;
|
|
out[4] = m10;
|
|
out[5] = m11;
|
|
out[6] = m12;
|
|
out[7] = m13;
|
|
out[8] = m20;
|
|
out[9] = m21;
|
|
out[10] = m22;
|
|
out[11] = m23;
|
|
out[12] = m30;
|
|
out[13] = m31;
|
|
out[14] = m32;
|
|
out[15] = m33;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a mat4 to the given values
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m02 Component in column 0, row 2 position (index 2)
|
|
* @param {Number} m03 Component in column 0, row 3 position (index 3)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 4)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 5)
|
|
* @param {Number} m12 Component in column 1, row 2 position (index 6)
|
|
* @param {Number} m13 Component in column 1, row 3 position (index 7)
|
|
* @param {Number} m20 Component in column 2, row 0 position (index 8)
|
|
* @param {Number} m21 Component in column 2, row 1 position (index 9)
|
|
* @param {Number} m22 Component in column 2, row 2 position (index 10)
|
|
* @param {Number} m23 Component in column 2, row 3 position (index 11)
|
|
* @param {Number} m30 Component in column 3, row 0 position (index 12)
|
|
* @param {Number} m31 Component in column 3, row 1 position (index 13)
|
|
* @param {Number} m32 Component in column 3, row 2 position (index 14)
|
|
* @param {Number} m33 Component in column 3, row 3 position (index 15)
|
|
* @returns {mat4} out
|
|
*/
|
|
function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m02;
|
|
out[3] = m03;
|
|
out[4] = m10;
|
|
out[5] = m11;
|
|
out[6] = m12;
|
|
out[7] = m13;
|
|
out[8] = m20;
|
|
out[9] = m21;
|
|
out[10] = m22;
|
|
out[11] = m23;
|
|
out[12] = m30;
|
|
out[13] = m31;
|
|
out[14] = m32;
|
|
out[15] = m33;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set a mat4 to the identity matrix
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @returns {mat4} out
|
|
*/
|
|
function identity(out) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = 1;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 1;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Transpose the values of a mat4
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the source matrix
|
|
* @returns {mat4} out
|
|
*/
|
|
function transpose(out, a) {
|
|
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
|
if (out === a) {
|
|
var a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a12 = a[6],
|
|
a13 = a[7];
|
|
var a23 = a[11];
|
|
|
|
out[1] = a[4];
|
|
out[2] = a[8];
|
|
out[3] = a[12];
|
|
out[4] = a01;
|
|
out[6] = a[9];
|
|
out[7] = a[13];
|
|
out[8] = a02;
|
|
out[9] = a12;
|
|
out[11] = a[14];
|
|
out[12] = a03;
|
|
out[13] = a13;
|
|
out[14] = a23;
|
|
} else {
|
|
out[0] = a[0];
|
|
out[1] = a[4];
|
|
out[2] = a[8];
|
|
out[3] = a[12];
|
|
out[4] = a[1];
|
|
out[5] = a[5];
|
|
out[6] = a[9];
|
|
out[7] = a[13];
|
|
out[8] = a[2];
|
|
out[9] = a[6];
|
|
out[10] = a[10];
|
|
out[11] = a[14];
|
|
out[12] = a[3];
|
|
out[13] = a[7];
|
|
out[14] = a[11];
|
|
out[15] = a[15];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Inverts a mat4
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the source matrix
|
|
* @returns {mat4} out
|
|
*/
|
|
function invert(out, a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a10 = a[4],
|
|
a11 = a[5],
|
|
a12 = a[6],
|
|
a13 = a[7];
|
|
var a20 = a[8],
|
|
a21 = a[9],
|
|
a22 = a[10],
|
|
a23 = a[11];
|
|
var a30 = a[12],
|
|
a31 = a[13],
|
|
a32 = a[14],
|
|
a33 = a[15];
|
|
|
|
var b00 = a00 * a11 - a01 * a10;
|
|
var b01 = a00 * a12 - a02 * a10;
|
|
var b02 = a00 * a13 - a03 * a10;
|
|
var b03 = a01 * a12 - a02 * a11;
|
|
var b04 = a01 * a13 - a03 * a11;
|
|
var b05 = a02 * a13 - a03 * a12;
|
|
var b06 = a20 * a31 - a21 * a30;
|
|
var b07 = a20 * a32 - a22 * a30;
|
|
var b08 = a20 * a33 - a23 * a30;
|
|
var b09 = a21 * a32 - a22 * a31;
|
|
var b10 = a21 * a33 - a23 * a31;
|
|
var b11 = a22 * a33 - a23 * a32;
|
|
|
|
// Calculate the determinant
|
|
var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
|
|
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
|
|
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
|
|
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
|
|
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
|
|
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
|
|
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
|
|
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
|
|
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
|
|
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
|
|
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
|
|
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
|
|
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
|
|
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
|
|
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
|
|
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the adjugate of a mat4
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the source matrix
|
|
* @returns {mat4} out
|
|
*/
|
|
function adjoint(out, a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a10 = a[4],
|
|
a11 = a[5],
|
|
a12 = a[6],
|
|
a13 = a[7];
|
|
var a20 = a[8],
|
|
a21 = a[9],
|
|
a22 = a[10],
|
|
a23 = a[11];
|
|
var a30 = a[12],
|
|
a31 = a[13],
|
|
a32 = a[14],
|
|
a33 = a[15];
|
|
|
|
out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);
|
|
out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
|
|
out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);
|
|
out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
|
|
out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
|
|
out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);
|
|
out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
|
|
out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);
|
|
out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);
|
|
out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
|
|
out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);
|
|
out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
|
|
out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
|
|
out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);
|
|
out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
|
|
out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the determinant of a mat4
|
|
*
|
|
* @param {mat4} a the source matrix
|
|
* @returns {Number} determinant of a
|
|
*/
|
|
function determinant(a) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a10 = a[4],
|
|
a11 = a[5],
|
|
a12 = a[6],
|
|
a13 = a[7];
|
|
var a20 = a[8],
|
|
a21 = a[9],
|
|
a22 = a[10],
|
|
a23 = a[11];
|
|
var a30 = a[12],
|
|
a31 = a[13],
|
|
a32 = a[14],
|
|
a33 = a[15];
|
|
|
|
var b00 = a00 * a11 - a01 * a10;
|
|
var b01 = a00 * a12 - a02 * a10;
|
|
var b02 = a00 * a13 - a03 * a10;
|
|
var b03 = a01 * a12 - a02 * a11;
|
|
var b04 = a01 * a13 - a03 * a11;
|
|
var b05 = a02 * a13 - a03 * a12;
|
|
var b06 = a20 * a31 - a21 * a30;
|
|
var b07 = a20 * a32 - a22 * a30;
|
|
var b08 = a20 * a33 - a23 * a30;
|
|
var b09 = a21 * a32 - a22 * a31;
|
|
var b10 = a21 * a33 - a23 * a31;
|
|
var b11 = a22 * a33 - a23 * a32;
|
|
|
|
// Calculate the determinant
|
|
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
}
|
|
|
|
/**
|
|
* Multiplies two mat4s
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the first operand
|
|
* @param {mat4} b the second operand
|
|
* @returns {mat4} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
var a00 = a[0],
|
|
a01 = a[1],
|
|
a02 = a[2],
|
|
a03 = a[3];
|
|
var a10 = a[4],
|
|
a11 = a[5],
|
|
a12 = a[6],
|
|
a13 = a[7];
|
|
var a20 = a[8],
|
|
a21 = a[9],
|
|
a22 = a[10],
|
|
a23 = a[11];
|
|
var a30 = a[12],
|
|
a31 = a[13],
|
|
a32 = a[14],
|
|
a33 = a[15];
|
|
|
|
// Cache only the current line of the second matrix
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3];
|
|
out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
|
b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7];
|
|
out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
|
b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11];
|
|
out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
|
|
b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15];
|
|
out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
|
|
out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
|
|
out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
|
|
out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Translate a mat4 by the given vector
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to translate
|
|
* @param {vec3} v vector to translate by
|
|
* @returns {mat4} out
|
|
*/
|
|
function translate(out, a, v) {
|
|
var x = v[0],
|
|
y = v[1],
|
|
z = v[2];
|
|
var a00 = void 0,
|
|
a01 = void 0,
|
|
a02 = void 0,
|
|
a03 = void 0;
|
|
var a10 = void 0,
|
|
a11 = void 0,
|
|
a12 = void 0,
|
|
a13 = void 0;
|
|
var a20 = void 0,
|
|
a21 = void 0,
|
|
a22 = void 0,
|
|
a23 = void 0;
|
|
|
|
if (a === out) {
|
|
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
|
|
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
|
|
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
|
|
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
|
|
} else {
|
|
a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
|
|
a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
|
|
a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
|
|
|
|
out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;
|
|
out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;
|
|
out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;
|
|
|
|
out[12] = a00 * x + a10 * y + a20 * z + a[12];
|
|
out[13] = a01 * x + a11 * y + a21 * z + a[13];
|
|
out[14] = a02 * x + a12 * y + a22 * z + a[14];
|
|
out[15] = a03 * x + a13 * y + a23 * z + a[15];
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Scales the mat4 by the dimensions in the given vec3 not using vectorization
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to scale
|
|
* @param {vec3} v the vec3 to scale the matrix by
|
|
* @returns {mat4} out
|
|
**/
|
|
function scale(out, a, v) {
|
|
var x = v[0],
|
|
y = v[1],
|
|
z = v[2];
|
|
|
|
out[0] = a[0] * x;
|
|
out[1] = a[1] * x;
|
|
out[2] = a[2] * x;
|
|
out[3] = a[3] * x;
|
|
out[4] = a[4] * y;
|
|
out[5] = a[5] * y;
|
|
out[6] = a[6] * y;
|
|
out[7] = a[7] * y;
|
|
out[8] = a[8] * z;
|
|
out[9] = a[9] * z;
|
|
out[10] = a[10] * z;
|
|
out[11] = a[11] * z;
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a mat4 by the given angle around the given axis
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @param {vec3} axis the axis to rotate around
|
|
* @returns {mat4} out
|
|
*/
|
|
function rotate(out, a, rad, axis) {
|
|
var x = axis[0],
|
|
y = axis[1],
|
|
z = axis[2];
|
|
var len = Math.sqrt(x * x + y * y + z * z);
|
|
var s = void 0,
|
|
c = void 0,
|
|
t = void 0;
|
|
var a00 = void 0,
|
|
a01 = void 0,
|
|
a02 = void 0,
|
|
a03 = void 0;
|
|
var a10 = void 0,
|
|
a11 = void 0,
|
|
a12 = void 0,
|
|
a13 = void 0;
|
|
var a20 = void 0,
|
|
a21 = void 0,
|
|
a22 = void 0,
|
|
a23 = void 0;
|
|
var b00 = void 0,
|
|
b01 = void 0,
|
|
b02 = void 0;
|
|
var b10 = void 0,
|
|
b11 = void 0,
|
|
b12 = void 0;
|
|
var b20 = void 0,
|
|
b21 = void 0,
|
|
b22 = void 0;
|
|
|
|
if (Math.abs(len) < glMatrix.EPSILON) {
|
|
return null;
|
|
}
|
|
|
|
len = 1 / len;
|
|
x *= len;
|
|
y *= len;
|
|
z *= len;
|
|
|
|
s = Math.sin(rad);
|
|
c = Math.cos(rad);
|
|
t = 1 - c;
|
|
|
|
a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
|
|
a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
|
|
a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
|
|
|
|
// Construct the elements of the rotation matrix
|
|
b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s;
|
|
b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s;
|
|
b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c;
|
|
|
|
// Perform rotation-specific matrix multiplication
|
|
out[0] = a00 * b00 + a10 * b01 + a20 * b02;
|
|
out[1] = a01 * b00 + a11 * b01 + a21 * b02;
|
|
out[2] = a02 * b00 + a12 * b01 + a22 * b02;
|
|
out[3] = a03 * b00 + a13 * b01 + a23 * b02;
|
|
out[4] = a00 * b10 + a10 * b11 + a20 * b12;
|
|
out[5] = a01 * b10 + a11 * b11 + a21 * b12;
|
|
out[6] = a02 * b10 + a12 * b11 + a22 * b12;
|
|
out[7] = a03 * b10 + a13 * b11 + a23 * b12;
|
|
out[8] = a00 * b20 + a10 * b21 + a20 * b22;
|
|
out[9] = a01 * b20 + a11 * b21 + a21 * b22;
|
|
out[10] = a02 * b20 + a12 * b21 + a22 * b22;
|
|
out[11] = a03 * b20 + a13 * b21 + a23 * b22;
|
|
|
|
if (a !== out) {
|
|
// If the source and destination differ, copy the unchanged last row
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a matrix by the given angle around the X axis
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function rotateX(out, a, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
var a10 = a[4];
|
|
var a11 = a[5];
|
|
var a12 = a[6];
|
|
var a13 = a[7];
|
|
var a20 = a[8];
|
|
var a21 = a[9];
|
|
var a22 = a[10];
|
|
var a23 = a[11];
|
|
|
|
if (a !== out) {
|
|
// If the source and destination differ, copy the unchanged rows
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
}
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[4] = a10 * c + a20 * s;
|
|
out[5] = a11 * c + a21 * s;
|
|
out[6] = a12 * c + a22 * s;
|
|
out[7] = a13 * c + a23 * s;
|
|
out[8] = a20 * c - a10 * s;
|
|
out[9] = a21 * c - a11 * s;
|
|
out[10] = a22 * c - a12 * s;
|
|
out[11] = a23 * c - a13 * s;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a matrix by the given angle around the Y axis
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function rotateY(out, a, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
var a00 = a[0];
|
|
var a01 = a[1];
|
|
var a02 = a[2];
|
|
var a03 = a[3];
|
|
var a20 = a[8];
|
|
var a21 = a[9];
|
|
var a22 = a[10];
|
|
var a23 = a[11];
|
|
|
|
if (a !== out) {
|
|
// If the source and destination differ, copy the unchanged rows
|
|
out[4] = a[4];
|
|
out[5] = a[5];
|
|
out[6] = a[6];
|
|
out[7] = a[7];
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
}
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[0] = a00 * c - a20 * s;
|
|
out[1] = a01 * c - a21 * s;
|
|
out[2] = a02 * c - a22 * s;
|
|
out[3] = a03 * c - a23 * s;
|
|
out[8] = a00 * s + a20 * c;
|
|
out[9] = a01 * s + a21 * c;
|
|
out[10] = a02 * s + a22 * c;
|
|
out[11] = a03 * s + a23 * c;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a matrix by the given angle around the Z axis
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function rotateZ(out, a, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
var a00 = a[0];
|
|
var a01 = a[1];
|
|
var a02 = a[2];
|
|
var a03 = a[3];
|
|
var a10 = a[4];
|
|
var a11 = a[5];
|
|
var a12 = a[6];
|
|
var a13 = a[7];
|
|
|
|
if (a !== out) {
|
|
// If the source and destination differ, copy the unchanged last row
|
|
out[8] = a[8];
|
|
out[9] = a[9];
|
|
out[10] = a[10];
|
|
out[11] = a[11];
|
|
out[12] = a[12];
|
|
out[13] = a[13];
|
|
out[14] = a[14];
|
|
out[15] = a[15];
|
|
}
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[0] = a00 * c + a10 * s;
|
|
out[1] = a01 * c + a11 * s;
|
|
out[2] = a02 * c + a12 * s;
|
|
out[3] = a03 * c + a13 * s;
|
|
out[4] = a10 * c - a00 * s;
|
|
out[5] = a11 * c - a01 * s;
|
|
out[6] = a12 * c - a02 * s;
|
|
out[7] = a13 * c - a03 * s;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector translation
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.translate(dest, dest, vec);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {vec3} v Translation vector
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromTranslation(out, v) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = 1;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 1;
|
|
out[11] = 0;
|
|
out[12] = v[0];
|
|
out[13] = v[1];
|
|
out[14] = v[2];
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector scaling
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.scale(dest, dest, vec);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {vec3} v Scaling vector
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromScaling(out, v) {
|
|
out[0] = v[0];
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = v[1];
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = v[2];
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a given angle around a given axis
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.rotate(dest, dest, rad, axis);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @param {vec3} axis the axis to rotate around
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromRotation(out, rad, axis) {
|
|
var x = axis[0],
|
|
y = axis[1],
|
|
z = axis[2];
|
|
var len = Math.sqrt(x * x + y * y + z * z);
|
|
var s = void 0,
|
|
c = void 0,
|
|
t = void 0;
|
|
|
|
if (Math.abs(len) < glMatrix.EPSILON) {
|
|
return null;
|
|
}
|
|
|
|
len = 1 / len;
|
|
x *= len;
|
|
y *= len;
|
|
z *= len;
|
|
|
|
s = Math.sin(rad);
|
|
c = Math.cos(rad);
|
|
t = 1 - c;
|
|
|
|
// Perform rotation-specific matrix multiplication
|
|
out[0] = x * x * t + c;
|
|
out[1] = y * x * t + z * s;
|
|
out[2] = z * x * t - y * s;
|
|
out[3] = 0;
|
|
out[4] = x * y * t - z * s;
|
|
out[5] = y * y * t + c;
|
|
out[6] = z * y * t + x * s;
|
|
out[7] = 0;
|
|
out[8] = x * z * t + y * s;
|
|
out[9] = y * z * t - x * s;
|
|
out[10] = z * z * t + c;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from the given angle around the X axis
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.rotateX(dest, dest, rad);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromXRotation(out, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = c;
|
|
out[6] = s;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = -s;
|
|
out[10] = c;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from the given angle around the Y axis
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.rotateY(dest, dest, rad);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromYRotation(out, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[0] = c;
|
|
out[1] = 0;
|
|
out[2] = -s;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = 1;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = s;
|
|
out[9] = 0;
|
|
out[10] = c;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from the given angle around the Z axis
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.rotateZ(dest, dest, rad);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromZRotation(out, rad) {
|
|
var s = Math.sin(rad);
|
|
var c = Math.cos(rad);
|
|
|
|
// Perform axis-specific matrix multiplication
|
|
out[0] = c;
|
|
out[1] = s;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = -s;
|
|
out[5] = c;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 1;
|
|
out[11] = 0;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a quaternion rotation and vector translation
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.translate(dest, vec);
|
|
* let quatMat = mat4.create();
|
|
* quat4.toMat4(quat, quatMat);
|
|
* mat4.multiply(dest, quatMat);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {quat4} q Rotation quaternion
|
|
* @param {vec3} v Translation vector
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromRotationTranslation(out, q, v) {
|
|
// Quaternion math
|
|
var x = q[0],
|
|
y = q[1],
|
|
z = q[2],
|
|
w = q[3];
|
|
var x2 = x + x;
|
|
var y2 = y + y;
|
|
var z2 = z + z;
|
|
|
|
var xx = x * x2;
|
|
var xy = x * y2;
|
|
var xz = x * z2;
|
|
var yy = y * y2;
|
|
var yz = y * z2;
|
|
var zz = z * z2;
|
|
var wx = w * x2;
|
|
var wy = w * y2;
|
|
var wz = w * z2;
|
|
|
|
out[0] = 1 - (yy + zz);
|
|
out[1] = xy + wz;
|
|
out[2] = xz - wy;
|
|
out[3] = 0;
|
|
out[4] = xy - wz;
|
|
out[5] = 1 - (xx + zz);
|
|
out[6] = yz + wx;
|
|
out[7] = 0;
|
|
out[8] = xz + wy;
|
|
out[9] = yz - wx;
|
|
out[10] = 1 - (xx + yy);
|
|
out[11] = 0;
|
|
out[12] = v[0];
|
|
out[13] = v[1];
|
|
out[14] = v[2];
|
|
out[15] = 1;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the translation vector component of a transformation
|
|
* matrix. If a matrix is built with fromRotationTranslation,
|
|
* the returned vector will be the same as the translation vector
|
|
* originally supplied.
|
|
* @param {vec3} out Vector to receive translation component
|
|
* @param {mat4} mat Matrix to be decomposed (input)
|
|
* @return {vec3} out
|
|
*/
|
|
function getTranslation(out, mat) {
|
|
out[0] = mat[12];
|
|
out[1] = mat[13];
|
|
out[2] = mat[14];
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns the scaling factor component of a transformation
|
|
* matrix. If a matrix is built with fromRotationTranslationScale
|
|
* with a normalized Quaternion paramter, the returned vector will be
|
|
* the same as the scaling vector
|
|
* originally supplied.
|
|
* @param {vec3} out Vector to receive scaling factor component
|
|
* @param {mat4} mat Matrix to be decomposed (input)
|
|
* @return {vec3} out
|
|
*/
|
|
function getScaling(out, mat) {
|
|
var m11 = mat[0];
|
|
var m12 = mat[1];
|
|
var m13 = mat[2];
|
|
var m21 = mat[4];
|
|
var m22 = mat[5];
|
|
var m23 = mat[6];
|
|
var m31 = mat[8];
|
|
var m32 = mat[9];
|
|
var m33 = mat[10];
|
|
|
|
out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
|
|
out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
|
|
out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a quaternion representing the rotational component
|
|
* of a transformation matrix. If a matrix is built with
|
|
* fromRotationTranslation, the returned quaternion will be the
|
|
* same as the quaternion originally supplied.
|
|
* @param {quat} out Quaternion to receive the rotation component
|
|
* @param {mat4} mat Matrix to be decomposed (input)
|
|
* @return {quat} out
|
|
*/
|
|
function getRotation(out, mat) {
|
|
// Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
|
var trace = mat[0] + mat[5] + mat[10];
|
|
var S = 0;
|
|
|
|
if (trace > 0) {
|
|
S = Math.sqrt(trace + 1.0) * 2;
|
|
out[3] = 0.25 * S;
|
|
out[0] = (mat[6] - mat[9]) / S;
|
|
out[1] = (mat[8] - mat[2]) / S;
|
|
out[2] = (mat[1] - mat[4]) / S;
|
|
} else if (mat[0] > mat[5] & mat[0] > mat[10]) {
|
|
S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
|
|
out[3] = (mat[6] - mat[9]) / S;
|
|
out[0] = 0.25 * S;
|
|
out[1] = (mat[1] + mat[4]) / S;
|
|
out[2] = (mat[8] + mat[2]) / S;
|
|
} else if (mat[5] > mat[10]) {
|
|
S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
|
|
out[3] = (mat[8] - mat[2]) / S;
|
|
out[0] = (mat[1] + mat[4]) / S;
|
|
out[1] = 0.25 * S;
|
|
out[2] = (mat[6] + mat[9]) / S;
|
|
} else {
|
|
S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
|
|
out[3] = (mat[1] - mat[4]) / S;
|
|
out[0] = (mat[8] + mat[2]) / S;
|
|
out[1] = (mat[6] + mat[9]) / S;
|
|
out[2] = 0.25 * S;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a quaternion rotation, vector translation and vector scale
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.translate(dest, vec);
|
|
* let quatMat = mat4.create();
|
|
* quat4.toMat4(quat, quatMat);
|
|
* mat4.multiply(dest, quatMat);
|
|
* mat4.scale(dest, scale)
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {quat4} q Rotation quaternion
|
|
* @param {vec3} v Translation vector
|
|
* @param {vec3} s Scaling vector
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromRotationTranslationScale(out, q, v, s) {
|
|
// Quaternion math
|
|
var x = q[0],
|
|
y = q[1],
|
|
z = q[2],
|
|
w = q[3];
|
|
var x2 = x + x;
|
|
var y2 = y + y;
|
|
var z2 = z + z;
|
|
|
|
var xx = x * x2;
|
|
var xy = x * y2;
|
|
var xz = x * z2;
|
|
var yy = y * y2;
|
|
var yz = y * z2;
|
|
var zz = z * z2;
|
|
var wx = w * x2;
|
|
var wy = w * y2;
|
|
var wz = w * z2;
|
|
var sx = s[0];
|
|
var sy = s[1];
|
|
var sz = s[2];
|
|
|
|
out[0] = (1 - (yy + zz)) * sx;
|
|
out[1] = (xy + wz) * sx;
|
|
out[2] = (xz - wy) * sx;
|
|
out[3] = 0;
|
|
out[4] = (xy - wz) * sy;
|
|
out[5] = (1 - (xx + zz)) * sy;
|
|
out[6] = (yz + wx) * sy;
|
|
out[7] = 0;
|
|
out[8] = (xz + wy) * sz;
|
|
out[9] = (yz - wx) * sz;
|
|
out[10] = (1 - (xx + yy)) * sz;
|
|
out[11] = 0;
|
|
out[12] = v[0];
|
|
out[13] = v[1];
|
|
out[14] = v[2];
|
|
out[15] = 1;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat4.identity(dest);
|
|
* mat4.translate(dest, vec);
|
|
* mat4.translate(dest, origin);
|
|
* let quatMat = mat4.create();
|
|
* quat4.toMat4(quat, quatMat);
|
|
* mat4.multiply(dest, quatMat);
|
|
* mat4.scale(dest, scale)
|
|
* mat4.translate(dest, negativeOrigin);
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {quat4} q Rotation quaternion
|
|
* @param {vec3} v Translation vector
|
|
* @param {vec3} s Scaling vector
|
|
* @param {vec3} o The origin vector around which to scale and rotate
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
|
|
// Quaternion math
|
|
var x = q[0],
|
|
y = q[1],
|
|
z = q[2],
|
|
w = q[3];
|
|
var x2 = x + x;
|
|
var y2 = y + y;
|
|
var z2 = z + z;
|
|
|
|
var xx = x * x2;
|
|
var xy = x * y2;
|
|
var xz = x * z2;
|
|
var yy = y * y2;
|
|
var yz = y * z2;
|
|
var zz = z * z2;
|
|
var wx = w * x2;
|
|
var wy = w * y2;
|
|
var wz = w * z2;
|
|
|
|
var sx = s[0];
|
|
var sy = s[1];
|
|
var sz = s[2];
|
|
|
|
var ox = o[0];
|
|
var oy = o[1];
|
|
var oz = o[2];
|
|
|
|
out[0] = (1 - (yy + zz)) * sx;
|
|
out[1] = (xy + wz) * sx;
|
|
out[2] = (xz - wy) * sx;
|
|
out[3] = 0;
|
|
out[4] = (xy - wz) * sy;
|
|
out[5] = (1 - (xx + zz)) * sy;
|
|
out[6] = (yz + wx) * sy;
|
|
out[7] = 0;
|
|
out[8] = (xz + wy) * sz;
|
|
out[9] = (yz - wx) * sz;
|
|
out[10] = (1 - (xx + yy)) * sz;
|
|
out[11] = 0;
|
|
out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz);
|
|
out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz);
|
|
out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz);
|
|
out[15] = 1;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates a 4x4 matrix from the given quaternion
|
|
*
|
|
* @param {mat4} out mat4 receiving operation result
|
|
* @param {quat} q Quaternion to create matrix from
|
|
*
|
|
* @returns {mat4} out
|
|
*/
|
|
function fromQuat(out, q) {
|
|
var x = q[0],
|
|
y = q[1],
|
|
z = q[2],
|
|
w = q[3];
|
|
var x2 = x + x;
|
|
var y2 = y + y;
|
|
var z2 = z + z;
|
|
|
|
var xx = x * x2;
|
|
var yx = y * x2;
|
|
var yy = y * y2;
|
|
var zx = z * x2;
|
|
var zy = z * y2;
|
|
var zz = z * z2;
|
|
var wx = w * x2;
|
|
var wy = w * y2;
|
|
var wz = w * z2;
|
|
|
|
out[0] = 1 - yy - zz;
|
|
out[1] = yx + wz;
|
|
out[2] = zx - wy;
|
|
out[3] = 0;
|
|
|
|
out[4] = yx - wz;
|
|
out[5] = 1 - xx - zz;
|
|
out[6] = zy + wx;
|
|
out[7] = 0;
|
|
|
|
out[8] = zx + wy;
|
|
out[9] = zy - wx;
|
|
out[10] = 1 - xx - yy;
|
|
out[11] = 0;
|
|
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 0;
|
|
out[15] = 1;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a frustum matrix with the given bounds
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {Number} left Left bound of the frustum
|
|
* @param {Number} right Right bound of the frustum
|
|
* @param {Number} bottom Bottom bound of the frustum
|
|
* @param {Number} top Top bound of the frustum
|
|
* @param {Number} near Near bound of the frustum
|
|
* @param {Number} far Far bound of the frustum
|
|
* @returns {mat4} out
|
|
*/
|
|
function frustum(out, left, right, bottom, top, near, far) {
|
|
var rl = 1 / (right - left);
|
|
var tb = 1 / (top - bottom);
|
|
var nf = 1 / (near - far);
|
|
out[0] = near * 2 * rl;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = near * 2 * tb;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = (right + left) * rl;
|
|
out[9] = (top + bottom) * tb;
|
|
out[10] = (far + near) * nf;
|
|
out[11] = -1;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = far * near * 2 * nf;
|
|
out[15] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a perspective projection matrix with the given bounds
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {number} fovy Vertical field of view in radians
|
|
* @param {number} aspect Aspect ratio. typically viewport width/height
|
|
* @param {number} near Near bound of the frustum
|
|
* @param {number} far Far bound of the frustum
|
|
* @returns {mat4} out
|
|
*/
|
|
function perspective(out, fovy, aspect, near, far) {
|
|
var f = 1.0 / Math.tan(fovy / 2);
|
|
var nf = 1 / (near - far);
|
|
out[0] = f / aspect;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = f;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = (far + near) * nf;
|
|
out[11] = -1;
|
|
out[12] = 0;
|
|
out[13] = 0;
|
|
out[14] = 2 * far * near * nf;
|
|
out[15] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a perspective projection matrix with the given field of view.
|
|
* This is primarily useful for generating projection matrices to be used
|
|
* with the still experiemental WebVR API.
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
|
|
* @param {number} near Near bound of the frustum
|
|
* @param {number} far Far bound of the frustum
|
|
* @returns {mat4} out
|
|
*/
|
|
function perspectiveFromFieldOfView(out, fov, near, far) {
|
|
var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);
|
|
var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);
|
|
var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);
|
|
var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);
|
|
var xScale = 2.0 / (leftTan + rightTan);
|
|
var yScale = 2.0 / (upTan + downTan);
|
|
|
|
out[0] = xScale;
|
|
out[1] = 0.0;
|
|
out[2] = 0.0;
|
|
out[3] = 0.0;
|
|
out[4] = 0.0;
|
|
out[5] = yScale;
|
|
out[6] = 0.0;
|
|
out[7] = 0.0;
|
|
out[8] = -((leftTan - rightTan) * xScale * 0.5);
|
|
out[9] = (upTan - downTan) * yScale * 0.5;
|
|
out[10] = far / (near - far);
|
|
out[11] = -1.0;
|
|
out[12] = 0.0;
|
|
out[13] = 0.0;
|
|
out[14] = far * near / (near - far);
|
|
out[15] = 0.0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a orthogonal projection matrix with the given bounds
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {number} left Left bound of the frustum
|
|
* @param {number} right Right bound of the frustum
|
|
* @param {number} bottom Bottom bound of the frustum
|
|
* @param {number} top Top bound of the frustum
|
|
* @param {number} near Near bound of the frustum
|
|
* @param {number} far Far bound of the frustum
|
|
* @returns {mat4} out
|
|
*/
|
|
function ortho(out, left, right, bottom, top, near, far) {
|
|
var lr = 1 / (left - right);
|
|
var bt = 1 / (bottom - top);
|
|
var nf = 1 / (near - far);
|
|
out[0] = -2 * lr;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 0;
|
|
out[4] = 0;
|
|
out[5] = -2 * bt;
|
|
out[6] = 0;
|
|
out[7] = 0;
|
|
out[8] = 0;
|
|
out[9] = 0;
|
|
out[10] = 2 * nf;
|
|
out[11] = 0;
|
|
out[12] = (left + right) * lr;
|
|
out[13] = (top + bottom) * bt;
|
|
out[14] = (far + near) * nf;
|
|
out[15] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a look-at matrix with the given eye position, focal point, and up axis
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {vec3} eye Position of the viewer
|
|
* @param {vec3} center Point the viewer is looking at
|
|
* @param {vec3} up vec3 pointing up
|
|
* @returns {mat4} out
|
|
*/
|
|
function lookAt(out, eye, center, up) {
|
|
var x0 = void 0,
|
|
x1 = void 0,
|
|
x2 = void 0,
|
|
y0 = void 0,
|
|
y1 = void 0,
|
|
y2 = void 0,
|
|
z0 = void 0,
|
|
z1 = void 0,
|
|
z2 = void 0,
|
|
len = void 0;
|
|
var eyex = eye[0];
|
|
var eyey = eye[1];
|
|
var eyez = eye[2];
|
|
var upx = up[0];
|
|
var upy = up[1];
|
|
var upz = up[2];
|
|
var centerx = center[0];
|
|
var centery = center[1];
|
|
var centerz = center[2];
|
|
|
|
if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {
|
|
return mat4.identity(out);
|
|
}
|
|
|
|
z0 = eyex - centerx;
|
|
z1 = eyey - centery;
|
|
z2 = eyez - centerz;
|
|
|
|
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
|
|
z0 *= len;
|
|
z1 *= len;
|
|
z2 *= len;
|
|
|
|
x0 = upy * z2 - upz * z1;
|
|
x1 = upz * z0 - upx * z2;
|
|
x2 = upx * z1 - upy * z0;
|
|
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
|
|
if (!len) {
|
|
x0 = 0;
|
|
x1 = 0;
|
|
x2 = 0;
|
|
} else {
|
|
len = 1 / len;
|
|
x0 *= len;
|
|
x1 *= len;
|
|
x2 *= len;
|
|
}
|
|
|
|
y0 = z1 * x2 - z2 * x1;
|
|
y1 = z2 * x0 - z0 * x2;
|
|
y2 = z0 * x1 - z1 * x0;
|
|
|
|
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
|
|
if (!len) {
|
|
y0 = 0;
|
|
y1 = 0;
|
|
y2 = 0;
|
|
} else {
|
|
len = 1 / len;
|
|
y0 *= len;
|
|
y1 *= len;
|
|
y2 *= len;
|
|
}
|
|
|
|
out[0] = x0;
|
|
out[1] = y0;
|
|
out[2] = z0;
|
|
out[3] = 0;
|
|
out[4] = x1;
|
|
out[5] = y1;
|
|
out[6] = z1;
|
|
out[7] = 0;
|
|
out[8] = x2;
|
|
out[9] = y2;
|
|
out[10] = z2;
|
|
out[11] = 0;
|
|
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
|
|
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
|
|
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
|
|
out[15] = 1;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Generates a matrix that makes something look at something else.
|
|
*
|
|
* @param {mat4} out mat4 frustum matrix will be written into
|
|
* @param {vec3} eye Position of the viewer
|
|
* @param {vec3} center Point the viewer is looking at
|
|
* @param {vec3} up vec3 pointing up
|
|
* @returns {mat4} out
|
|
*/
|
|
function targetTo(out, eye, target, up) {
|
|
var eyex = eye[0],
|
|
eyey = eye[1],
|
|
eyez = eye[2],
|
|
upx = up[0],
|
|
upy = up[1],
|
|
upz = up[2];
|
|
|
|
var z0 = eyex - target[0],
|
|
z1 = eyey - target[1],
|
|
z2 = eyez - target[2];
|
|
|
|
var len = z0 * z0 + z1 * z1 + z2 * z2;
|
|
if (len > 0) {
|
|
len = 1 / Math.sqrt(len);
|
|
z0 *= len;
|
|
z1 *= len;
|
|
z2 *= len;
|
|
}
|
|
|
|
var x0 = upy * z2 - upz * z1,
|
|
x1 = upz * z0 - upx * z2,
|
|
x2 = upx * z1 - upy * z0;
|
|
|
|
out[0] = x0;
|
|
out[1] = x1;
|
|
out[2] = x2;
|
|
out[3] = 0;
|
|
out[4] = z1 * x2 - z2 * x1;
|
|
out[5] = z2 * x0 - z0 * x2;
|
|
out[6] = z0 * x1 - z1 * x0;
|
|
out[7] = 0;
|
|
out[8] = z0;
|
|
out[9] = z1;
|
|
out[10] = z2;
|
|
out[11] = 0;
|
|
out[12] = eyex;
|
|
out[13] = eyey;
|
|
out[14] = eyez;
|
|
out[15] = 1;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Returns a string representation of a mat4
|
|
*
|
|
* @param {mat4} a matrix to represent as a string
|
|
* @returns {String} string representation of the matrix
|
|
*/
|
|
function str(a) {
|
|
return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns Frobenius norm of a mat4
|
|
*
|
|
* @param {mat4} a the matrix to calculate Frobenius norm of
|
|
* @returns {Number} Frobenius norm
|
|
*/
|
|
function frob(a) {
|
|
return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2));
|
|
}
|
|
|
|
/**
|
|
* Adds two mat4's
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the first operand
|
|
* @param {mat4} b the second operand
|
|
* @returns {mat4} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
out[4] = a[4] + b[4];
|
|
out[5] = a[5] + b[5];
|
|
out[6] = a[6] + b[6];
|
|
out[7] = a[7] + b[7];
|
|
out[8] = a[8] + b[8];
|
|
out[9] = a[9] + b[9];
|
|
out[10] = a[10] + b[10];
|
|
out[11] = a[11] + b[11];
|
|
out[12] = a[12] + b[12];
|
|
out[13] = a[13] + b[13];
|
|
out[14] = a[14] + b[14];
|
|
out[15] = a[15] + b[15];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts matrix b from matrix a
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the first operand
|
|
* @param {mat4} b the second operand
|
|
* @returns {mat4} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
out[4] = a[4] - b[4];
|
|
out[5] = a[5] - b[5];
|
|
out[6] = a[6] - b[6];
|
|
out[7] = a[7] - b[7];
|
|
out[8] = a[8] - b[8];
|
|
out[9] = a[9] - b[9];
|
|
out[10] = a[10] - b[10];
|
|
out[11] = a[11] - b[11];
|
|
out[12] = a[12] - b[12];
|
|
out[13] = a[13] - b[13];
|
|
out[14] = a[14] - b[14];
|
|
out[15] = a[15] - b[15];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiply each element of the matrix by a scalar.
|
|
*
|
|
* @param {mat4} out the receiving matrix
|
|
* @param {mat4} a the matrix to scale
|
|
* @param {Number} b amount to scale the matrix's elements by
|
|
* @returns {mat4} out
|
|
*/
|
|
function multiplyScalar(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
out[4] = a[4] * b;
|
|
out[5] = a[5] * b;
|
|
out[6] = a[6] * b;
|
|
out[7] = a[7] * b;
|
|
out[8] = a[8] * b;
|
|
out[9] = a[9] * b;
|
|
out[10] = a[10] * b;
|
|
out[11] = a[11] * b;
|
|
out[12] = a[12] * b;
|
|
out[13] = a[13] * b;
|
|
out[14] = a[14] * b;
|
|
out[15] = a[15] * b;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two mat4's after multiplying each element of the second operand by a scalar value.
|
|
*
|
|
* @param {mat4} out the receiving vector
|
|
* @param {mat4} a the first operand
|
|
* @param {mat4} b the second operand
|
|
* @param {Number} scale the amount to scale b's elements by before adding
|
|
* @returns {mat4} out
|
|
*/
|
|
function multiplyScalarAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
out[2] = a[2] + b[2] * scale;
|
|
out[3] = a[3] + b[3] * scale;
|
|
out[4] = a[4] + b[4] * scale;
|
|
out[5] = a[5] + b[5] * scale;
|
|
out[6] = a[6] + b[6] * scale;
|
|
out[7] = a[7] + b[7] * scale;
|
|
out[8] = a[8] + b[8] * scale;
|
|
out[9] = a[9] + b[9] * scale;
|
|
out[10] = a[10] + b[10] * scale;
|
|
out[11] = a[11] + b[11] * scale;
|
|
out[12] = a[12] + b[12] * scale;
|
|
out[13] = a[13] + b[13] * scale;
|
|
out[14] = a[14] + b[14] * scale;
|
|
out[15] = a[15] + b[15] * scale;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {mat4} a The first matrix.
|
|
* @param {mat4} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
|
*
|
|
* @param {mat4} a The first matrix.
|
|
* @param {mat4} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var a4 = a[4],
|
|
a5 = a[5],
|
|
a6 = a[6],
|
|
a7 = a[7];
|
|
var a8 = a[8],
|
|
a9 = a[9],
|
|
a10 = a[10],
|
|
a11 = a[11];
|
|
var a12 = a[12],
|
|
a13 = a[13],
|
|
a14 = a[14],
|
|
a15 = a[15];
|
|
|
|
var b0 = b[0],
|
|
b1 = b[1],
|
|
b2 = b[2],
|
|
b3 = b[3];
|
|
var b4 = b[4],
|
|
b5 = b[5],
|
|
b6 = b[6],
|
|
b7 = b[7];
|
|
var b8 = b[8],
|
|
b9 = b[9],
|
|
b10 = b[10],
|
|
b11 = b[11];
|
|
var b12 = b[12],
|
|
b13 = b[13],
|
|
b14 = b[14],
|
|
b15 = b[15];
|
|
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link mat4.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link mat4.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/***/ }),
|
|
/* 8 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = undefined;
|
|
exports.create = create;
|
|
exports.identity = identity;
|
|
exports.setAxisAngle = setAxisAngle;
|
|
exports.getAxisAngle = getAxisAngle;
|
|
exports.multiply = multiply;
|
|
exports.rotateX = rotateX;
|
|
exports.rotateY = rotateY;
|
|
exports.rotateZ = rotateZ;
|
|
exports.calculateW = calculateW;
|
|
exports.slerp = slerp;
|
|
exports.invert = invert;
|
|
exports.conjugate = conjugate;
|
|
exports.fromMat3 = fromMat3;
|
|
exports.fromEuler = fromEuler;
|
|
exports.str = str;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
var _mat = __webpack_require__(1);
|
|
|
|
var mat3 = _interopRequireWildcard(_mat);
|
|
|
|
var _vec = __webpack_require__(2);
|
|
|
|
var vec3 = _interopRequireWildcard(_vec);
|
|
|
|
var _vec2 = __webpack_require__(3);
|
|
|
|
var vec4 = _interopRequireWildcard(_vec2);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* Quaternion
|
|
* @module quat
|
|
*/
|
|
|
|
/**
|
|
* Creates a new identity quat
|
|
*
|
|
* @returns {quat} a new quaternion
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set a quat to the identity quaternion
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @returns {quat} out
|
|
*/
|
|
function identity(out) {
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Sets a quat from the given angle and rotation axis,
|
|
* then returns it.
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {vec3} axis the axis around which to rotate
|
|
* @param {Number} rad the angle in radians
|
|
* @returns {quat} out
|
|
**/
|
|
function setAxisAngle(out, axis, rad) {
|
|
rad = rad * 0.5;
|
|
var s = Math.sin(rad);
|
|
out[0] = s * axis[0];
|
|
out[1] = s * axis[1];
|
|
out[2] = s * axis[2];
|
|
out[3] = Math.cos(rad);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Gets the rotation axis and angle for a given
|
|
* quaternion. If a quaternion is created with
|
|
* setAxisAngle, this method will return the same
|
|
* values as providied in the original parameter list
|
|
* OR functionally equivalent values.
|
|
* Example: The quaternion formed by axis [0, 0, 1] and
|
|
* angle -90 is the same as the quaternion formed by
|
|
* [0, 0, 1] and 270. This method favors the latter.
|
|
* @param {vec3} out_axis Vector receiving the axis of rotation
|
|
* @param {quat} q Quaternion to be decomposed
|
|
* @return {Number} Angle, in radians, of the rotation
|
|
*/
|
|
function getAxisAngle(out_axis, q) {
|
|
var rad = Math.acos(q[3]) * 2.0;
|
|
var s = Math.sin(rad / 2.0);
|
|
if (s != 0.0) {
|
|
out_axis[0] = q[0] / s;
|
|
out_axis[1] = q[1] / s;
|
|
out_axis[2] = q[2] / s;
|
|
} else {
|
|
// If s is zero, return any axis (no rotation - axis does not matter)
|
|
out_axis[0] = 1;
|
|
out_axis[1] = 0;
|
|
out_axis[2] = 0;
|
|
}
|
|
return rad;
|
|
}
|
|
|
|
/**
|
|
* Multiplies two quat's
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @returns {quat} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2],
|
|
aw = a[3];
|
|
var bx = b[0],
|
|
by = b[1],
|
|
bz = b[2],
|
|
bw = b[3];
|
|
|
|
out[0] = ax * bw + aw * bx + ay * bz - az * by;
|
|
out[1] = ay * bw + aw * by + az * bx - ax * bz;
|
|
out[2] = az * bw + aw * bz + ax * by - ay * bx;
|
|
out[3] = aw * bw - ax * bx - ay * by - az * bz;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a quaternion by the given angle about the X axis
|
|
*
|
|
* @param {quat} out quat receiving operation result
|
|
* @param {quat} a quat to rotate
|
|
* @param {number} rad angle (in radians) to rotate
|
|
* @returns {quat} out
|
|
*/
|
|
function rotateX(out, a, rad) {
|
|
rad *= 0.5;
|
|
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2],
|
|
aw = a[3];
|
|
var bx = Math.sin(rad),
|
|
bw = Math.cos(rad);
|
|
|
|
out[0] = ax * bw + aw * bx;
|
|
out[1] = ay * bw + az * bx;
|
|
out[2] = az * bw - ay * bx;
|
|
out[3] = aw * bw - ax * bx;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a quaternion by the given angle about the Y axis
|
|
*
|
|
* @param {quat} out quat receiving operation result
|
|
* @param {quat} a quat to rotate
|
|
* @param {number} rad angle (in radians) to rotate
|
|
* @returns {quat} out
|
|
*/
|
|
function rotateY(out, a, rad) {
|
|
rad *= 0.5;
|
|
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2],
|
|
aw = a[3];
|
|
var by = Math.sin(rad),
|
|
bw = Math.cos(rad);
|
|
|
|
out[0] = ax * bw - az * by;
|
|
out[1] = ay * bw + aw * by;
|
|
out[2] = az * bw + ax * by;
|
|
out[3] = aw * bw - ay * by;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Rotates a quaternion by the given angle about the Z axis
|
|
*
|
|
* @param {quat} out quat receiving operation result
|
|
* @param {quat} a quat to rotate
|
|
* @param {number} rad angle (in radians) to rotate
|
|
* @returns {quat} out
|
|
*/
|
|
function rotateZ(out, a, rad) {
|
|
rad *= 0.5;
|
|
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2],
|
|
aw = a[3];
|
|
var bz = Math.sin(rad),
|
|
bw = Math.cos(rad);
|
|
|
|
out[0] = ax * bw + ay * bz;
|
|
out[1] = ay * bw - ax * bz;
|
|
out[2] = az * bw + aw * bz;
|
|
out[3] = aw * bw - az * bz;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the W component of a quat from the X, Y, and Z components.
|
|
* Assumes that quaternion is 1 unit in length.
|
|
* Any existing W component will be ignored.
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a quat to calculate W component of
|
|
* @returns {quat} out
|
|
*/
|
|
function calculateW(out, a) {
|
|
var x = a[0],
|
|
y = a[1],
|
|
z = a[2];
|
|
|
|
out[0] = x;
|
|
out[1] = y;
|
|
out[2] = z;
|
|
out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Performs a spherical linear interpolation between two quat
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {quat} out
|
|
*/
|
|
function slerp(out, a, b, t) {
|
|
// benchmarks:
|
|
// http://jsperf.com/quaternion-slerp-implementations
|
|
var ax = a[0],
|
|
ay = a[1],
|
|
az = a[2],
|
|
aw = a[3];
|
|
var bx = b[0],
|
|
by = b[1],
|
|
bz = b[2],
|
|
bw = b[3];
|
|
|
|
var omega = void 0,
|
|
cosom = void 0,
|
|
sinom = void 0,
|
|
scale0 = void 0,
|
|
scale1 = void 0;
|
|
|
|
// calc cosine
|
|
cosom = ax * bx + ay * by + az * bz + aw * bw;
|
|
// adjust signs (if necessary)
|
|
if (cosom < 0.0) {
|
|
cosom = -cosom;
|
|
bx = -bx;
|
|
by = -by;
|
|
bz = -bz;
|
|
bw = -bw;
|
|
}
|
|
// calculate coefficients
|
|
if (1.0 - cosom > 0.000001) {
|
|
// standard case (slerp)
|
|
omega = Math.acos(cosom);
|
|
sinom = Math.sin(omega);
|
|
scale0 = Math.sin((1.0 - t) * omega) / sinom;
|
|
scale1 = Math.sin(t * omega) / sinom;
|
|
} else {
|
|
// "from" and "to" quaternions are very close
|
|
// ... so we can do a linear interpolation
|
|
scale0 = 1.0 - t;
|
|
scale1 = t;
|
|
}
|
|
// calculate final values
|
|
out[0] = scale0 * ax + scale1 * bx;
|
|
out[1] = scale0 * ay + scale1 * by;
|
|
out[2] = scale0 * az + scale1 * bz;
|
|
out[3] = scale0 * aw + scale1 * bw;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the inverse of a quat
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a quat to calculate inverse of
|
|
* @returns {quat} out
|
|
*/
|
|
function invert(out, a) {
|
|
var a0 = a[0],
|
|
a1 = a[1],
|
|
a2 = a[2],
|
|
a3 = a[3];
|
|
var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
|
|
var invDot = dot ? 1.0 / dot : 0;
|
|
|
|
// TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
|
|
|
|
out[0] = -a0 * invDot;
|
|
out[1] = -a1 * invDot;
|
|
out[2] = -a2 * invDot;
|
|
out[3] = a3 * invDot;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Calculates the conjugate of a quat
|
|
* If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a quat to calculate conjugate of
|
|
* @returns {quat} out
|
|
*/
|
|
function conjugate(out, a) {
|
|
out[0] = -a[0];
|
|
out[1] = -a[1];
|
|
out[2] = -a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a quaternion from the given 3x3 rotation matrix.
|
|
*
|
|
* NOTE: The resultant quaternion is not normalized, so you should be sure
|
|
* to renormalize the quaternion yourself where necessary.
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {mat3} m rotation matrix
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
function fromMat3(out, m) {
|
|
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
|
|
// article "Quaternion Calculus and Fast Animation".
|
|
var fTrace = m[0] + m[4] + m[8];
|
|
var fRoot = void 0;
|
|
|
|
if (fTrace > 0.0) {
|
|
// |w| > 1/2, may as well choose w > 1/2
|
|
fRoot = Math.sqrt(fTrace + 1.0); // 2w
|
|
out[3] = 0.5 * fRoot;
|
|
fRoot = 0.5 / fRoot; // 1/(4w)
|
|
out[0] = (m[5] - m[7]) * fRoot;
|
|
out[1] = (m[6] - m[2]) * fRoot;
|
|
out[2] = (m[1] - m[3]) * fRoot;
|
|
} else {
|
|
// |w| <= 1/2
|
|
var i = 0;
|
|
if (m[4] > m[0]) i = 1;
|
|
if (m[8] > m[i * 3 + i]) i = 2;
|
|
var j = (i + 1) % 3;
|
|
var k = (i + 2) % 3;
|
|
|
|
fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
|
|
out[i] = 0.5 * fRoot;
|
|
fRoot = 0.5 / fRoot;
|
|
out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
|
|
out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
|
|
out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a quaternion from the given euler angle x, y, z.
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {x} Angle to rotate around X axis in degrees.
|
|
* @param {y} Angle to rotate around Y axis in degrees.
|
|
* @param {z} Angle to rotate around Z axis in degrees.
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
function fromEuler(out, x, y, z) {
|
|
var halfToRad = 0.5 * Math.PI / 180.0;
|
|
x *= halfToRad;
|
|
y *= halfToRad;
|
|
z *= halfToRad;
|
|
|
|
var sx = Math.sin(x);
|
|
var cx = Math.cos(x);
|
|
var sy = Math.sin(y);
|
|
var cy = Math.cos(y);
|
|
var sz = Math.sin(z);
|
|
var cz = Math.cos(z);
|
|
|
|
out[0] = sx * cy * cz - cx * sy * sz;
|
|
out[1] = cx * sy * cz + sx * cy * sz;
|
|
out[2] = cx * cy * sz - sx * sy * cz;
|
|
out[3] = cx * cy * cz + sx * sy * sz;
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a quatenion
|
|
*
|
|
* @param {quat} a vector to represent as a string
|
|
* @returns {String} string representation of the vector
|
|
*/
|
|
function str(a) {
|
|
return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
|
}
|
|
|
|
/**
|
|
* Creates a new quat initialized with values from an existing quaternion
|
|
*
|
|
* @param {quat} a quaternion to clone
|
|
* @returns {quat} a new quaternion
|
|
* @function
|
|
*/
|
|
var clone = exports.clone = vec4.clone;
|
|
|
|
/**
|
|
* Creates a new quat initialized with the given values
|
|
*
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @param {Number} w W component
|
|
* @returns {quat} a new quaternion
|
|
* @function
|
|
*/
|
|
var fromValues = exports.fromValues = vec4.fromValues;
|
|
|
|
/**
|
|
* Copy the values from one quat to another
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the source quaternion
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var copy = exports.copy = vec4.copy;
|
|
|
|
/**
|
|
* Set the components of a quat to the given values
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @param {Number} z Z component
|
|
* @param {Number} w W component
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var set = exports.set = vec4.set;
|
|
|
|
/**
|
|
* Adds two quat's
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var add = exports.add = vec4.add;
|
|
|
|
/**
|
|
* Alias for {@link quat.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Scales a quat by a scalar number
|
|
*
|
|
* @param {quat} out the receiving vector
|
|
* @param {quat} a the vector to scale
|
|
* @param {Number} b amount to scale the vector by
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var scale = exports.scale = vec4.scale;
|
|
|
|
/**
|
|
* Calculates the dot product of two quat's
|
|
*
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @returns {Number} dot product of a and b
|
|
* @function
|
|
*/
|
|
var dot = exports.dot = vec4.dot;
|
|
|
|
/**
|
|
* Performs a linear interpolation between two quat's
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var lerp = exports.lerp = vec4.lerp;
|
|
|
|
/**
|
|
* Calculates the length of a quat
|
|
*
|
|
* @param {quat} a vector to calculate length of
|
|
* @returns {Number} length of a
|
|
*/
|
|
var length = exports.length = vec4.length;
|
|
|
|
/**
|
|
* Alias for {@link quat.length}
|
|
* @function
|
|
*/
|
|
var len = exports.len = length;
|
|
|
|
/**
|
|
* Calculates the squared length of a quat
|
|
*
|
|
* @param {quat} a vector to calculate squared length of
|
|
* @returns {Number} squared length of a
|
|
* @function
|
|
*/
|
|
var squaredLength = exports.squaredLength = vec4.squaredLength;
|
|
|
|
/**
|
|
* Alias for {@link quat.squaredLength}
|
|
* @function
|
|
*/
|
|
var sqrLen = exports.sqrLen = squaredLength;
|
|
|
|
/**
|
|
* Normalize a quat
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a quaternion to normalize
|
|
* @returns {quat} out
|
|
* @function
|
|
*/
|
|
var normalize = exports.normalize = vec4.normalize;
|
|
|
|
/**
|
|
* Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {quat} a The first quaternion.
|
|
* @param {quat} b The second quaternion.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
var exactEquals = exports.exactEquals = vec4.exactEquals;
|
|
|
|
/**
|
|
* Returns whether or not the quaternions have approximately the same elements in the same position.
|
|
*
|
|
* @param {quat} a The first vector.
|
|
* @param {quat} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
var equals = exports.equals = vec4.equals;
|
|
|
|
/**
|
|
* Sets a quaternion to represent the shortest rotation from one
|
|
* vector to another.
|
|
*
|
|
* Both vectors are assumed to be unit length.
|
|
*
|
|
* @param {quat} out the receiving quaternion.
|
|
* @param {vec3} a the initial vector
|
|
* @param {vec3} b the destination vector
|
|
* @returns {quat} out
|
|
*/
|
|
var rotationTo = exports.rotationTo = function () {
|
|
var tmpvec3 = vec3.create();
|
|
var xUnitVec3 = vec3.fromValues(1, 0, 0);
|
|
var yUnitVec3 = vec3.fromValues(0, 1, 0);
|
|
|
|
return function (out, a, b) {
|
|
var dot = vec3.dot(a, b);
|
|
if (dot < -0.999999) {
|
|
vec3.cross(tmpvec3, xUnitVec3, a);
|
|
if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);
|
|
vec3.normalize(tmpvec3, tmpvec3);
|
|
setAxisAngle(out, tmpvec3, Math.PI);
|
|
return out;
|
|
} else if (dot > 0.999999) {
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
} else {
|
|
vec3.cross(tmpvec3, a, b);
|
|
out[0] = tmpvec3[0];
|
|
out[1] = tmpvec3[1];
|
|
out[2] = tmpvec3[2];
|
|
out[3] = 1 + dot;
|
|
return normalize(out, out);
|
|
}
|
|
};
|
|
}();
|
|
|
|
/**
|
|
* Performs a spherical linear interpolation with two control points
|
|
*
|
|
* @param {quat} out the receiving quaternion
|
|
* @param {quat} a the first operand
|
|
* @param {quat} b the second operand
|
|
* @param {quat} c the third operand
|
|
* @param {quat} d the fourth operand
|
|
* @param {Number} t interpolation amount
|
|
* @returns {quat} out
|
|
*/
|
|
var sqlerp = exports.sqlerp = function () {
|
|
var temp1 = create();
|
|
var temp2 = create();
|
|
|
|
return function (out, a, b, c, d, t) {
|
|
slerp(temp1, a, d, t);
|
|
slerp(temp2, b, c, t);
|
|
slerp(out, temp1, temp2, 2 * t * (1 - t));
|
|
|
|
return out;
|
|
};
|
|
}();
|
|
|
|
/**
|
|
* Sets the specified quaternion with values corresponding to the given
|
|
* axes. Each axis is a vec3 and is expected to be unit length and
|
|
* perpendicular to all other specified axes.
|
|
*
|
|
* @param {vec3} view the vector representing the viewing direction
|
|
* @param {vec3} right the vector representing the local "right" direction
|
|
* @param {vec3} up the vector representing the local "up" direction
|
|
* @returns {quat} out
|
|
*/
|
|
var setAxes = exports.setAxes = function () {
|
|
var matr = mat3.create();
|
|
|
|
return function (out, view, right, up) {
|
|
matr[0] = right[0];
|
|
matr[3] = right[1];
|
|
matr[6] = right[2];
|
|
|
|
matr[1] = up[0];
|
|
matr[4] = up[1];
|
|
matr[7] = up[2];
|
|
|
|
matr[2] = -view[0];
|
|
matr[5] = -view[1];
|
|
matr[8] = -view[2];
|
|
|
|
return normalize(out, fromMat3(out, matr));
|
|
};
|
|
}();
|
|
|
|
/***/ }),
|
|
/* 9 */
|
|
/***/ (function(module, exports, __webpack_require__) {
|
|
|
|
"use strict";
|
|
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = undefined;
|
|
exports.create = create;
|
|
exports.clone = clone;
|
|
exports.fromValues = fromValues;
|
|
exports.copy = copy;
|
|
exports.set = set;
|
|
exports.add = add;
|
|
exports.subtract = subtract;
|
|
exports.multiply = multiply;
|
|
exports.divide = divide;
|
|
exports.ceil = ceil;
|
|
exports.floor = floor;
|
|
exports.min = min;
|
|
exports.max = max;
|
|
exports.round = round;
|
|
exports.scale = scale;
|
|
exports.scaleAndAdd = scaleAndAdd;
|
|
exports.distance = distance;
|
|
exports.squaredDistance = squaredDistance;
|
|
exports.length = length;
|
|
exports.squaredLength = squaredLength;
|
|
exports.negate = negate;
|
|
exports.inverse = inverse;
|
|
exports.normalize = normalize;
|
|
exports.dot = dot;
|
|
exports.cross = cross;
|
|
exports.lerp = lerp;
|
|
exports.random = random;
|
|
exports.transformMat2 = transformMat2;
|
|
exports.transformMat2d = transformMat2d;
|
|
exports.transformMat3 = transformMat3;
|
|
exports.transformMat4 = transformMat4;
|
|
exports.str = str;
|
|
exports.exactEquals = exactEquals;
|
|
exports.equals = equals;
|
|
|
|
var _common = __webpack_require__(0);
|
|
|
|
var glMatrix = _interopRequireWildcard(_common);
|
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
|
|
|
|
/**
|
|
* 2 Dimensional Vector
|
|
* @module vec2
|
|
*/
|
|
|
|
/**
|
|
* Creates a new, empty vec2
|
|
*
|
|
* @returns {vec2} a new 2D vector
|
|
*/
|
|
function create() {
|
|
var out = new glMatrix.ARRAY_TYPE(2);
|
|
out[0] = 0;
|
|
out[1] = 0;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec2 initialized with values from an existing vector
|
|
*
|
|
* @param {vec2} a vector to clone
|
|
* @returns {vec2} a new 2D vector
|
|
*/
|
|
/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
function clone(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(2);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a new vec2 initialized with the given values
|
|
*
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @returns {vec2} a new 2D vector
|
|
*/
|
|
function fromValues(x, y) {
|
|
var out = new glMatrix.ARRAY_TYPE(2);
|
|
out[0] = x;
|
|
out[1] = y;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Copy the values from one vec2 to another
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the source vector
|
|
* @returns {vec2} out
|
|
*/
|
|
function copy(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Set the components of a vec2 to the given values
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {Number} x X component
|
|
* @param {Number} y Y component
|
|
* @returns {vec2} out
|
|
*/
|
|
function set(out, x, y) {
|
|
out[0] = x;
|
|
out[1] = y;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Adds two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function add(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Subtracts vector b from vector a
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function subtract(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Multiplies two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function multiply(out, a, b) {
|
|
out[0] = a[0] * b[0];
|
|
out[1] = a[1] * b[1];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Divides two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function divide(out, a, b) {
|
|
out[0] = a[0] / b[0];
|
|
out[1] = a[1] / b[1];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Math.ceil the components of a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to ceil
|
|
* @returns {vec2} out
|
|
*/
|
|
function ceil(out, a) {
|
|
out[0] = Math.ceil(a[0]);
|
|
out[1] = Math.ceil(a[1]);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Math.floor the components of a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to floor
|
|
* @returns {vec2} out
|
|
*/
|
|
function floor(out, a) {
|
|
out[0] = Math.floor(a[0]);
|
|
out[1] = Math.floor(a[1]);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Returns the minimum of two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function min(out, a, b) {
|
|
out[0] = Math.min(a[0], b[0]);
|
|
out[1] = Math.min(a[1], b[1]);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Returns the maximum of two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec2} out
|
|
*/
|
|
function max(out, a, b) {
|
|
out[0] = Math.max(a[0], b[0]);
|
|
out[1] = Math.max(a[1], b[1]);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Math.round the components of a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to round
|
|
* @returns {vec2} out
|
|
*/
|
|
function round(out, a) {
|
|
out[0] = Math.round(a[0]);
|
|
out[1] = Math.round(a[1]);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Scales a vec2 by a scalar number
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the vector to scale
|
|
* @param {Number} b amount to scale the vector by
|
|
* @returns {vec2} out
|
|
*/
|
|
function scale(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Adds two vec2's after scaling the second operand by a scalar value
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @param {Number} scale the amount to scale b by before adding
|
|
* @returns {vec2} out
|
|
*/
|
|
function scaleAndAdd(out, a, b, scale) {
|
|
out[0] = a[0] + b[0] * scale;
|
|
out[1] = a[1] + b[1] * scale;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Calculates the euclidian distance between two vec2's
|
|
*
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {Number} distance between a and b
|
|
*/
|
|
function distance(a, b) {
|
|
var x = b[0] - a[0],
|
|
y = b[1] - a[1];
|
|
return Math.sqrt(x * x + y * y);
|
|
};
|
|
|
|
/**
|
|
* Calculates the squared euclidian distance between two vec2's
|
|
*
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {Number} squared distance between a and b
|
|
*/
|
|
function squaredDistance(a, b) {
|
|
var x = b[0] - a[0],
|
|
y = b[1] - a[1];
|
|
return x * x + y * y;
|
|
};
|
|
|
|
/**
|
|
* Calculates the length of a vec2
|
|
*
|
|
* @param {vec2} a vector to calculate length of
|
|
* @returns {Number} length of a
|
|
*/
|
|
function length(a) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
return Math.sqrt(x * x + y * y);
|
|
};
|
|
|
|
/**
|
|
* Calculates the squared length of a vec2
|
|
*
|
|
* @param {vec2} a vector to calculate squared length of
|
|
* @returns {Number} squared length of a
|
|
*/
|
|
function squaredLength(a) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
return x * x + y * y;
|
|
};
|
|
|
|
/**
|
|
* Negates the components of a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to negate
|
|
* @returns {vec2} out
|
|
*/
|
|
function negate(out, a) {
|
|
out[0] = -a[0];
|
|
out[1] = -a[1];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Returns the inverse of the components of a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to invert
|
|
* @returns {vec2} out
|
|
*/
|
|
function inverse(out, a) {
|
|
out[0] = 1.0 / a[0];
|
|
out[1] = 1.0 / a[1];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Normalize a vec2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a vector to normalize
|
|
* @returns {vec2} out
|
|
*/
|
|
function normalize(out, a) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
var len = x * x + y * y;
|
|
if (len > 0) {
|
|
//TODO: evaluate use of glm_invsqrt here?
|
|
len = 1 / Math.sqrt(len);
|
|
out[0] = a[0] * len;
|
|
out[1] = a[1] * len;
|
|
}
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Calculates the dot product of two vec2's
|
|
*
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {Number} dot product of a and b
|
|
*/
|
|
function dot(a, b) {
|
|
return a[0] * b[0] + a[1] * b[1];
|
|
};
|
|
|
|
/**
|
|
* Computes the cross product of two vec2's
|
|
* Note that the cross product must by definition produce a 3D vector
|
|
*
|
|
* @param {vec3} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @returns {vec3} out
|
|
*/
|
|
function cross(out, a, b) {
|
|
var z = a[0] * b[1] - a[1] * b[0];
|
|
out[0] = out[1] = 0;
|
|
out[2] = z;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Performs a linear interpolation between two vec2's
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the first operand
|
|
* @param {vec2} b the second operand
|
|
* @param {Number} t interpolation amount between the two inputs
|
|
* @returns {vec2} out
|
|
*/
|
|
function lerp(out, a, b, t) {
|
|
var ax = a[0],
|
|
ay = a[1];
|
|
out[0] = ax + t * (b[0] - ax);
|
|
out[1] = ay + t * (b[1] - ay);
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Generates a random vector with the given scale
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
|
|
* @returns {vec2} out
|
|
*/
|
|
function random(out, scale) {
|
|
scale = scale || 1.0;
|
|
var r = glMatrix.RANDOM() * 2.0 * Math.PI;
|
|
out[0] = Math.cos(r) * scale;
|
|
out[1] = Math.sin(r) * scale;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Transforms the vec2 with a mat2
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the vector to transform
|
|
* @param {mat2} m matrix to transform with
|
|
* @returns {vec2} out
|
|
*/
|
|
function transformMat2(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
out[0] = m[0] * x + m[2] * y;
|
|
out[1] = m[1] * x + m[3] * y;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Transforms the vec2 with a mat2d
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the vector to transform
|
|
* @param {mat2d} m matrix to transform with
|
|
* @returns {vec2} out
|
|
*/
|
|
function transformMat2d(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
out[0] = m[0] * x + m[2] * y + m[4];
|
|
out[1] = m[1] * x + m[3] * y + m[5];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Transforms the vec2 with a mat3
|
|
* 3rd vector component is implicitly '1'
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the vector to transform
|
|
* @param {mat3} m matrix to transform with
|
|
* @returns {vec2} out
|
|
*/
|
|
function transformMat3(out, a, m) {
|
|
var x = a[0],
|
|
y = a[1];
|
|
out[0] = m[0] * x + m[3] * y + m[6];
|
|
out[1] = m[1] * x + m[4] * y + m[7];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Transforms the vec2 with a mat4
|
|
* 3rd vector component is implicitly '0'
|
|
* 4th vector component is implicitly '1'
|
|
*
|
|
* @param {vec2} out the receiving vector
|
|
* @param {vec2} a the vector to transform
|
|
* @param {mat4} m matrix to transform with
|
|
* @returns {vec2} out
|
|
*/
|
|
function transformMat4(out, a, m) {
|
|
var x = a[0];
|
|
var y = a[1];
|
|
out[0] = m[0] * x + m[4] * y + m[12];
|
|
out[1] = m[1] * x + m[5] * y + m[13];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a vector
|
|
*
|
|
* @param {vec2} a vector to represent as a string
|
|
* @returns {String} string representation of the vector
|
|
*/
|
|
function str(a) {
|
|
return 'vec2(' + a[0] + ', ' + a[1] + ')';
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {vec2} a The first vector.
|
|
* @param {vec2} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function exactEquals(a, b) {
|
|
return a[0] === b[0] && a[1] === b[1];
|
|
}
|
|
|
|
/**
|
|
* Returns whether or not the vectors have approximately the same elements in the same position.
|
|
*
|
|
* @param {vec2} a The first vector.
|
|
* @param {vec2} b The second vector.
|
|
* @returns {Boolean} True if the vectors are equal, false otherwise.
|
|
*/
|
|
function equals(a, b) {
|
|
var a0 = a[0],
|
|
a1 = a[1];
|
|
var b0 = b[0],
|
|
b1 = b[1];
|
|
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));
|
|
}
|
|
|
|
/**
|
|
* Alias for {@link vec2.length}
|
|
* @function
|
|
*/
|
|
var len = exports.len = length;
|
|
|
|
/**
|
|
* Alias for {@link vec2.subtract}
|
|
* @function
|
|
*/
|
|
var sub = exports.sub = subtract;
|
|
|
|
/**
|
|
* Alias for {@link vec2.multiply}
|
|
* @function
|
|
*/
|
|
var mul = exports.mul = multiply;
|
|
|
|
/**
|
|
* Alias for {@link vec2.divide}
|
|
* @function
|
|
*/
|
|
var div = exports.div = divide;
|
|
|
|
/**
|
|
* Alias for {@link vec2.distance}
|
|
* @function
|
|
*/
|
|
var dist = exports.dist = distance;
|
|
|
|
/**
|
|
* Alias for {@link vec2.squaredDistance}
|
|
* @function
|
|
*/
|
|
var sqrDist = exports.sqrDist = squaredDistance;
|
|
|
|
/**
|
|
* Alias for {@link vec2.squaredLength}
|
|
* @function
|
|
*/
|
|
var sqrLen = exports.sqrLen = squaredLength;
|
|
|
|
/**
|
|
* Perform some operation over an array of vec2s.
|
|
*
|
|
* @param {Array} a the array of vectors to iterate over
|
|
* @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
|
|
* @param {Number} offset Number of elements to skip at the beginning of the array
|
|
* @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
|
|
* @param {Function} fn Function to call for each vector in the array
|
|
* @param {Object} [arg] additional argument to pass to fn
|
|
* @returns {Array} a
|
|
* @function
|
|
*/
|
|
var forEach = exports.forEach = function () {
|
|
var vec = create();
|
|
|
|
return function (a, stride, offset, count, fn, arg) {
|
|
var i = void 0,
|
|
l = void 0;
|
|
if (!stride) {
|
|
stride = 2;
|
|
}
|
|
|
|
if (!offset) {
|
|
offset = 0;
|
|
}
|
|
|
|
if (count) {
|
|
l = Math.min(count * stride + offset, a.length);
|
|
} else {
|
|
l = a.length;
|
|
}
|
|
|
|
for (i = offset; i < l; i += stride) {
|
|
vec[0] = a[i];vec[1] = a[i + 1];
|
|
fn(vec, vec, arg);
|
|
a[i] = vec[0];a[i + 1] = vec[1];
|
|
}
|
|
|
|
return a;
|
|
};
|
|
}();
|
|
|
|
/***/ })
|
|
/******/ ]);
|
|
}); |